日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù)f(x)=+k(+lnx)(k為常數(shù)).
          (1)當(dāng)k=0時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
          (2)當(dāng)k≥0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
          (3)若函數(shù)f(x)在(0,2)內(nèi)存在兩個(gè)極值點(diǎn),求k的取值范圍.

          【答案】解:(1)當(dāng)k=0時(shí),f(x)=,f′(x)=,
          故f(1)=e,f′(1)=﹣e,
          故曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y﹣e=﹣e(x﹣1),
          即切線方程為:ex+y﹣2e=0;
          (2)f(x)=+k(+lnx)的定義域?yàn)椋?,+∞),
          f′(x)=+k(﹣+)=(x﹣2)
          ∵k≥0,且x∈(0,+∞),∴>0,
          故當(dāng)x∈(0,2)時(shí),f′(x)<0,當(dāng)x∈(2,+∞)時(shí),f′(x)>0;
          故函數(shù)f(x)的單調(diào)減區(qū)間為(0,2),單調(diào)增區(qū)間為(2,+∞);
          (3)由(2)知,f′(x)=(x﹣2)
          <0在(0,2)上恒成立,
          又∵函數(shù)f(x)在(0,2)內(nèi)存在兩個(gè)極值點(diǎn),
          ∴h(x)=ex+kx在(0,2)內(nèi)存在兩個(gè)零點(diǎn),
          ∴y=ex與y=﹣kx的圖象在(0,2)內(nèi)有兩個(gè)交點(diǎn),
          作y=ex與y=﹣kx的圖象如圖,
          相切時(shí),設(shè)切點(diǎn)為(x,ex),
          =ex
          故x=1;
          故k1=e;
          k2==,
          故e<﹣k<,
          故﹣<k<﹣e.

          【解析】(1)求導(dǎo)f′(x)= , 從而可得f(1)=e,f′(1)=﹣e,從而確定切線方程;
          (2)求導(dǎo)f′(x)=(x﹣2) , 從而判斷導(dǎo)數(shù)的正負(fù)以確定函數(shù)的單調(diào)性;
          (3)求導(dǎo)f′(x)=(x﹣2) , 從而可得h(x)=ex+kx在(0,2)內(nèi)存在兩個(gè)零點(diǎn),從而化為y=ex與y=﹣kx的圖象在(0,2)內(nèi)有兩個(gè)交點(diǎn),從而利用數(shù)形結(jié)合求解.
          【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的最大(小)值與導(dǎo)數(shù)(求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在圓錐中,已知,⊙O的直徑,點(diǎn)C在底面圓周上,且,的中點(diǎn).

          (Ⅰ)證明:∥平面

          (Ⅱ)證明:平面平面;

          (Ⅲ)求二面角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】△ABC中,A=120°,AB=5,BC,則AC的值為________

          【答案】2

          【解析】

          利用余弦定理可得關(guān)于AC的方程,解之即可.

          由余弦定理可知cosA===﹣,

          解得AC=2或﹣7(舍去)

          故答案為:2

          【點(diǎn)睛】

          對于余弦定理一定要熟記兩種形式:(1;(2.另外,在解與三角形、三角函數(shù)有關(guān)的問題時(shí),還要記住, 等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.

          型】填空
          結(jié)束】
          15

          【題目】嫦娥奔月,舉國歡慶,據(jù)科學(xué)計(jì)算,運(yùn)載神六長征二號系列火箭,在點(diǎn)火第一秒鐘通過的路程為2 km,以后每秒鐘通過的路程都增加2 km,在達(dá)到離地面210 km的高度時(shí),火箭與飛船分離,則這一過程大約需要的時(shí)間是______秒.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了得到函數(shù)y=sin4x﹣cos4x的圖象,可以將函數(shù)y=sin4x的圖象(  )
          A.向右平移個(gè)單位
          B.向左平移個(gè)單位
          C.向右平移個(gè)單位
          D.向左平移個(gè)單位

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某高校文學(xué)院和理學(xué)院的學(xué)生組隊(duì)參加大學(xué)生電視辯論賽,文學(xué)院推薦了2名男生,3名女生,理學(xué)院推薦了4名男生,3名女生,文學(xué)院和理學(xué)院所推薦的學(xué)生一起參加集訓(xùn),由于集訓(xùn)后學(xué)生水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人,女生中隨機(jī)抽取3人組成代表隊(duì).
          (1)求文學(xué)院至少有一名學(xué)生入選代表隊(duì)的概率;
          (2)某場比賽前,從代表隊(duì)的6名學(xué)生在隨機(jī)抽取4名參賽,記X表示參賽的男生人數(shù),求X的分布列與數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,PB與底面所成的角為45°,底面ABCD為直角梯形,∠ABC=∠BAD=90°,PA=BC=AD=1.問:在棱PD上是否存在一點(diǎn)E,使得CE∥平面PAB?若存在,求出E點(diǎn)的位置;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列命題中不正確的是( )

          A. 平面平面,一條直線平行于平面,則一定平行于平面

          B. 平面平面,則內(nèi)的任意一條直線都平行于平面

          C. 一個(gè)三角形有兩條邊所在的直線分別平行于一個(gè)平面,那么該三角形所在的平面與這個(gè)平面平行

          D. 分別在兩個(gè)平行平面內(nèi)的兩條直線只能是平行直線或異面直線

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在等差數(shù)列中,,前項(xiàng)和滿足條件,

          1)求數(shù)列的通項(xiàng)公式和

          2)記,求數(shù)列的前項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè) , 是兩個(gè)非零向量,則下列哪個(gè)描述是正確的( 。
          A.若|+|=||﹣||,則
          B.若 , 則|+|=||﹣||
          C.若|+|=||﹣||,則存在實(shí)數(shù)λ使得=
          D.若存在實(shí)數(shù)λ使得= , 則|+|=||﹣||

          查看答案和解析>>

          同步練習(xí)冊答案