【題目】已知函數(shù),
.
(Ⅰ)若函數(shù)在
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(Ⅱ)若函數(shù)的圖象與直線
交于
兩點(diǎn),線段
中點(diǎn)的橫坐標(biāo)為
,證明:
(
為函數(shù)
的導(dǎo)函數(shù)).
【答案】(1);(2)見(jiàn)解析.
【解析】
(Ⅰ)由題意,知的定義域是
,
則,
令,則
=0,解得x=1或x=
.
∵函數(shù)在
上單調(diào)遞增,
∴ⅰ)當(dāng)時(shí),
在
上單調(diào)遞增,在
上單調(diào)遞減,符合題意;
ⅱ)當(dāng)時(shí),
在
和
上單調(diào)遞增,在
上單調(diào)遞減,符合題意;
ⅲ)當(dāng)時(shí),
在
上單調(diào)遞增,符合題意;
ⅳ)當(dāng)時(shí),
在
和
上單調(diào)遞增,在
上單調(diào)遞減,∵函數(shù)
在
上單調(diào)遞增,∴
,
綜上所述,的取值范圍是
.
(Ⅱ)由題意,得,
∴.
當(dāng)時(shí),
,
在
上單調(diào)遞增,與直線
不可能有兩個(gè)交點(diǎn),故
.
令,解得
;令
,解得
,故
在
上單調(diào)遞增,在
上單調(diào)遞減.
不妨設(shè),
,且
.
要證,需證
.即證
.
又,所以只需證
.
即證:當(dāng)時(shí),
.
設(shè),
則.
∴在
上單調(diào)遞減.
又,
故當(dāng)時(shí),
,原不等式成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)若方程
有四個(gè)不等的實(shí)數(shù)根,則實(shí)數(shù)
的取值范圍是
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】鯉魚(yú)是中國(guó)五千年文化傳承的載體之一,它既是拼搏進(jìn)取、敢于突破自我、敢于冒險(xiǎn)奮進(jìn)精神的載體,又是富裕、吉慶、幸運(yùn)的美好象征.某水產(chǎn)養(yǎng)殖研究所為發(fā)揚(yáng)傳統(tǒng)文化,準(zhǔn)備進(jìn)行“中國(guó)紅鯉”和“中華彩鯉”雜交育種實(shí)驗(yàn).研究所對(duì)200尾中國(guó)紅鯉和160尾中華彩鯉幼苗進(jìn)行2個(gè)月培育后,將根據(jù)體長(zhǎng)分別選擇生長(zhǎng)快的10尾中國(guó)紅鯉和8尾中華彩鯉作為種魚(yú)進(jìn)一步培育.為了解培育2個(gè)月后全體幼魚(yú)的體長(zhǎng)情況,按照品種進(jìn)行分層抽樣,其中共抽取40尾中國(guó)紅鯉的體長(zhǎng)數(shù)據(jù)(單位:)如下:
5 | 6 | 7 | 7.5 | 8 | 8.4 | 4 | 3.5 | 4.5 | 4.3 |
5 | 4 | 3 | 2.5 | 4 | 1.6 | 6 | 6.5 | 5.5 | 5.7 |
3.1 | 5.2 | 4.4 | 5 | 6.4 | 3.5 | 7 | 4 | 3 | 3.4 |
6.9 | 4.8 | 5.6 | 5 | 5.6 | 6.5 | 3 | 6 | 7 | 6.6 |
(1)根據(jù)以上樣本數(shù)據(jù)推斷,若某尾中國(guó)紅鯉的體長(zhǎng)為,它能否被選為種魚(yú)?說(shuō)明理由;
(2)通過(guò)計(jì)算得到中國(guó)紅鯉樣本數(shù)據(jù)平均值為,中華彩鯉樣本數(shù)據(jù)平均值為
,求所有樣本數(shù)據(jù)的平均值;
(3)如果將8尾中華彩鯉種魚(yú)隨機(jī)兩兩組合,求體長(zhǎng)最長(zhǎng)的2尾組合到一起的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線
與拋物線
交于
,
兩點(diǎn),且
.
(1)求的方程;
(2)試問(wèn):在軸的正半軸上是否存在一點(diǎn)
,使得
的外心在
上?若存在,求
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有如下問(wèn)題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無(wú)廣,高二丈,問(wèn):積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹腻涹w,下底面寬3丈,長(zhǎng)4丈,上棱長(zhǎng)2丈,高2丈,問(wèn):它的體積是多少?”(已知1丈為10尺)該鍥體的三視圖如圖所示,則該鍥體的體積為( )
A. 12000立方尺B. 11000立方尺
C. 10000立方尺D. 9000立方尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點(diǎn)為F,過(guò)F且與x軸垂直的直線交該拋物線于A,B兩點(diǎn),|AB|=4.
(1)求拋物線的方程;
(2)過(guò)點(diǎn)F的直線l交拋物線于P,Q兩點(diǎn),若△OPQ的面積為4,求直線l的斜率(其中O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)到其準(zhǔn)線的距離為
.
(1)求拋物線的方程;
(2)設(shè)直線與拋物線
相交于
兩點(diǎn),問(wèn)拋物線
上是否存在點(diǎn)
,使得
是正三角形?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右頂點(diǎn)為
,左焦點(diǎn)為
,離心率
,過(guò)點(diǎn)
的直線與橢圓交于另一個(gè)點(diǎn)
,且點(diǎn)
在
軸上的射影恰好為點(diǎn)
,若
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)圓上任意一點(diǎn)
作圓
的切線
與橢圓交于
,
兩點(diǎn),以
為直徑的圓是否過(guò)定點(diǎn),如過(guò)定點(diǎn),求出該定點(diǎn);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
的離心率為
,左、右頂點(diǎn)分別為
、
,過(guò)左焦點(diǎn)的直線
交橢圓
于
、
兩點(diǎn)(異于
、
兩點(diǎn)),當(dāng)直線
垂直于
軸時(shí),四邊形
的面積為6.
(1)求橢圓的方程;
(2)設(shè)直線、
的交點(diǎn)為
;試問(wèn)
的橫坐標(biāo)是否為定值?若是,求出定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com