【題目】鯉魚是中國(guó)五千年文化傳承的載體之一,它既是拼搏進(jìn)取、敢于突破自我、敢于冒險(xiǎn)奮進(jìn)精神的載體,又是富裕、吉慶、幸運(yùn)的美好象征.某水產(chǎn)養(yǎng)殖研究所為發(fā)揚(yáng)傳統(tǒng)文化,準(zhǔn)備進(jìn)行“中國(guó)紅鯉”和“中華彩鯉”雜交育種實(shí)驗(yàn).研究所對(duì)200尾中國(guó)紅鯉和160尾中華彩鯉幼苗進(jìn)行2個(gè)月培育后,將根據(jù)體長(zhǎng)分別選擇生長(zhǎng)快的10尾中國(guó)紅鯉和8尾中華彩鯉作為種魚進(jìn)一步培育.為了解培育2個(gè)月后全體幼魚的體長(zhǎng)情況,按照品種進(jìn)行分層抽樣,其中共抽取40尾中國(guó)紅鯉的體長(zhǎng)數(shù)據(jù)(單位:)如下:
5 | 6 | 7 | 7.5 | 8 | 8.4 | 4 | 3.5 | 4.5 | 4.3 |
5 | 4 | 3 | 2.5 | 4 | 1.6 | 6 | 6.5 | 5.5 | 5.7 |
3.1 | 5.2 | 4.4 | 5 | 6.4 | 3.5 | 7 | 4 | 3 | 3.4 |
6.9 | 4.8 | 5.6 | 5 | 5.6 | 6.5 | 3 | 6 | 7 | 6.6 |
(1)根據(jù)以上樣本數(shù)據(jù)推斷,若某尾中國(guó)紅鯉的體長(zhǎng)為,它能否被選為種魚?說明理由;
(2)通過計(jì)算得到中國(guó)紅鯉樣本數(shù)據(jù)平均值為,中華彩鯉樣本數(shù)據(jù)平均值為
,求所有樣本數(shù)據(jù)的平均值;
(3)如果將8尾中華彩鯉種魚隨機(jī)兩兩組合,求體長(zhǎng)最長(zhǎng)的2尾組合到一起的概率.
【答案】(1)能;(2);(3)
.
【解析】
(1)根據(jù)樣本數(shù)據(jù)中能被選為種魚的身長(zhǎng)數(shù)據(jù),可知能被選為種魚;(2)根據(jù)分層抽樣原則得到中華彩鯉的樣本數(shù),根據(jù)平均數(shù)計(jì)算方法求解得到結(jié)果;(3)列出與體長(zhǎng)最長(zhǎng)的
尾中的
尾組合到一起的所有情況,根據(jù)古典概型求得結(jié)果.
(1)能被選為種魚
尾中國(guó)紅鯉中有
尾能被選為種魚
尾中國(guó)紅鯉樣本中有
尾能被選為種魚
樣本數(shù)據(jù)中身長(zhǎng)為和
的中國(guó)紅鯉能被選為種魚
身長(zhǎng)為以下的中國(guó)紅鯉不能被選為種魚
由于,所以該尾中國(guó)紅鯉能被選為種魚
(2)根據(jù)分層抽樣的原則,抽取中華彩鯉樣本數(shù)為尾
所有樣本數(shù)據(jù)平均值為
(3)記體長(zhǎng)最長(zhǎng)的尾中華彩鯉為
,其他
尾中華彩鯉為
與組合的中華彩鯉,共有
,
,
,
,
,
,
七種情況
所以,體長(zhǎng)最長(zhǎng)的尾組合到一起的的概率為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是古希臘數(shù)學(xué)家阿基米德用平衡法求球的體積所用的圖形.此圖由正方形、半徑為
的圓及等腰直角三角形構(gòu)成,其中圓內(nèi)切于正方形,等腰三角形的直角頂點(diǎn)與
的中點(diǎn)
重合,斜邊在直線
上.已知
為
的中點(diǎn),現(xiàn)將該圖形繞直線
旋轉(zhuǎn)一周,則陰影部分旋轉(zhuǎn)后形成的幾何體積為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測(cè)驗(yàn)中,某班40名考生的成績(jī)滿分100分統(tǒng)計(jì)如圖所示.
(Ⅰ)估計(jì)這40名學(xué)生的測(cè)驗(yàn)成績(jī)的中位數(shù)精確到0.1;
(Ⅱ)記80分以上為優(yōu)秀,80分及以下為合格,結(jié)合頻率分布直方圖完成下表,并判斷是否有95%的把握認(rèn)為數(shù)學(xué)測(cè)驗(yàn)成績(jī)與性別有關(guān)?
合格 | 優(yōu)秀 | 合計(jì) | |
男生 | 16 | ||
女生 | 4 | ||
合計(jì) | 40 |
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“愛國(guó),是人世間最深層、最持久的情感,是一個(gè)人立德之源、立功之本。”在中華民族幾千年綿延發(fā)展的歷史長(zhǎng)河中,愛國(guó)主義始終是激昂的主旋律。愛國(guó)汽車公司擬對(duì)“東方紅”款高端汽車發(fā)動(dòng)機(jī)進(jìn)行科技改造,根據(jù)市場(chǎng)調(diào)研與模擬,得到科技改造投入(億元)與科技改造直接收益
(億元)的數(shù)據(jù)統(tǒng)計(jì)如下:
2 | 3 | 4 | 6 | 8 | 10 | 13 | 21 | 22 | 23 | 24 | 25 | |
13 | 22 | 31 | 42 | 50 | 56 | 58 | 68.5 | 68 | 67.5 | 66 | 66 |
當(dāng)時(shí),建立了
與
的兩個(gè)回歸模型:模型①:
;模型②:
;當(dāng)
時(shí),確定
與
滿足的線性回歸方程為:
.
(1)根據(jù)下列表格中的數(shù)據(jù),比較當(dāng)時(shí)模型①、②的相關(guān)指數(shù)
,并選擇擬合精度更高、更可靠的模型,預(yù)測(cè)對(duì)“東方紅”款汽車發(fā)動(dòng)機(jī)科技改造的投入為17億元時(shí)的直接收益.
回歸模型 | 模型① | 模型② |
回歸方程 | ||
182.4 | 79.2 |
(附:刻畫回歸效果的相關(guān)指數(shù),
.)
(2)為鼓勵(lì)科技創(chuàng)新,當(dāng)科技改造的投入不少于20億元時(shí),國(guó)家給予公司補(bǔ)貼收益10億元,以回歸方程為預(yù)測(cè)依據(jù),比較科技改造投入17億元與20億元時(shí)公司實(shí)際收益的大。
(附:用最小二乘法求線性回歸方程的系數(shù)公式
;
)
(3)科技改造后,“東方紅”款汽車發(fā)動(dòng)機(jī)的熱效大幅提高,
服從正態(tài)分布
,公司對(duì)科技改造團(tuán)隊(duì)的獎(jiǎng)勵(lì)方案如下:若發(fā)動(dòng)機(jī)的熱效率不超過
,不予獎(jiǎng)勵(lì);若發(fā)動(dòng)機(jī)的熱效率超過
但不超過
,每臺(tái)發(fā)動(dòng)機(jī)獎(jiǎng)勵(lì)2萬元;若發(fā)動(dòng)機(jī)的熱效率超過
,每臺(tái)發(fā)動(dòng)機(jī)獎(jiǎng)勵(lì)5萬元.求每臺(tái)發(fā)動(dòng)機(jī)獲得獎(jiǎng)勵(lì)的數(shù)學(xué)期望.
(附:隨機(jī)變量服從正態(tài)分布
,則
,
.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓柱中,點(diǎn)
、
分別為上、下底面的圓心,平面
是軸截面,點(diǎn)
在上底面圓周上(異于
、
),點(diǎn)
為下底面圓弧
的中點(diǎn),點(diǎn)
與點(diǎn)
在平面
的同側(cè),圓柱
的底面半徑為1,高為2.
(1)若平面平面
,證明:
;
(2)若直線平面
,求
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的是( ).
A.“,
互為共軛復(fù)數(shù)”是“
”的充分不必要條件
B.如圖,在復(fù)平面內(nèi),若復(fù)數(shù),
對(duì)應(yīng)的向量分別是
,
,則復(fù)數(shù)
對(duì)應(yīng)的點(diǎn)的坐標(biāo)為
C.若函數(shù)恰在
上單調(diào)遞減,則實(shí)數(shù)
的值為4
D.函數(shù)在點(diǎn)
處的切線方程為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(其中
為參數(shù)).以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,并取相同的單位長(zhǎng)度,曲線
的極坐標(biāo)方程為
.
(1)求直線的普通方程和曲線
的直角坐標(biāo)方程;
(2)過點(diǎn)作直線
的垂線交曲線
于
兩點(diǎn),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(Ⅰ)若函數(shù)在
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(Ⅱ)若函數(shù)的圖象與直線
交于
兩點(diǎn),線段
中點(diǎn)的橫坐標(biāo)為
,證明:
(
為函數(shù)
的導(dǎo)函數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,O為線段AC的中點(diǎn),點(diǎn)E在線段A1C1上,則直線OE與平面A1BC1所成角的正弦值的取值范圍是( 。
A.B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com