【題目】對于給定的數(shù)列,
,設
,即
是
,
,…,
中的最大值,則稱數(shù)列
是數(shù)列
,
的“和諧數(shù)列”.
(1)設,
,求
,
,
的值,并證明數(shù)列
是等差數(shù)列;
(2)設數(shù)列,
都是公比為q的正項等比數(shù)列,若數(shù)列
是等差數(shù)列,求公比q的取值范圍;
(3)設數(shù)列滿足
,數(shù)列
是數(shù)列
,
的“和諧數(shù)列”,且
(m為常數(shù),
,2,…,k),求證:
.
【答案】(1),
,
;證明詳見解析;(2)
;(3)詳見解析.
【解析】
(1)根據(jù)和諧數(shù)列定義求出,
,
,求出
,利用等差數(shù)列定義證明即可;
(2)分和
兩種情況討論,
時,可得
,計算
知數(shù)列不是等差數(shù)列,當
時,
可滿足
是等差數(shù)列;
(3)根據(jù)條件可證明,可得
,所以
,即證
.
(1)由題意知,
,
.
因為恒成立,
所以,
則4,
即,
故(與n無關的常數(shù)),
所以數(shù)列是公差為1的等差數(shù)列.
(2)因為數(shù)列,
都是公比為q的正項等比數(shù)列,
所以,
,
.
.
當時,
;,
所以,
則.
因為
,
所以,
此時數(shù)列不是等差數(shù)列,與題意矛盾.
當時,
,
所以,
則,
此(與n無關的常數(shù)),
所以數(shù)列是等差數(shù)列,符合題意.
綜上,公比q的取值范圍是.
(3)因為,
所以,
上面兩式相減得
因為
又,所以
,
所以
故,
即
則,
所以.
科目:高中數(shù)學 來源: 題型:
【題目】2020年寒假期間新冠肺炎肆虐,全國人民眾志成城抗擊疫情.某市要求全體市民在家隔離,同時決定全市所有學校推遲開學.某區(qū)教育局為了讓學生“停課不停學”,要求學校各科老師每天在網(wǎng)上授課,每天共280分鐘,請學生自主學習.區(qū)教育局為了了解高三學生網(wǎng)上學習情況,上課幾天后在全區(qū)高三學生中采取隨機抽樣的方法抽取了100名學生進行問卷調(diào)查,為了方便表述把學習時間在分鐘的學生稱為
類,把學習時間在
分鐘的學生稱為
類,把學習時間在
分鐘的學生稱為
類,隨機調(diào)查的100名學生學習時間的人數(shù)頻率分布直方圖如圖所示:以頻率估計概率回答下列問題:
(1)求100名學生中,
,
三類學生分別有多少人?
(2)在,
,
三類學生中,按分層抽樣的方法從上述100個學生中抽取10人,并在這10人中任意邀請3人電話訪談,求邀請的3人中是
類的學生人數(shù)的分布列和數(shù)學期望;
(3)某校高三(1)班有50名學生,某天語文和數(shù)學老師計劃分別在19:00—19:40和20:00—20:40在線上與學生交流,由于受校園網(wǎng)絡平臺的限制,每次只能30個人同時在線學習交流.假設這兩個時間段高三(1)班都有30名學生相互獨立地隨機登錄參加學習交流.設表示參加語文或數(shù)學學習交流的人數(shù),當
為多少時,其概率最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設 為等差數(shù)列
的前
項和,其中
,且
.
(1)求常數(shù) 的值,并寫出
的通項公式;
(2)記 ,數(shù)列
的前
項和為
,若對任意的
,都有
,求常數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2020年新冠肺炎疫情暴發(fā)以來,中國政府迅速采取最全面、最嚴格、最徹底的防控舉措,堅決遏制疫情蔓延勢頭,努力把疫情影響降到最低,為全世界抗擊新冠肺炎疫情做岀了貢獻.為普及防治新冠肺炎的相關知識,某高中學校開展了線上新冠肺炎防控知識競答活動,現(xiàn)從大批參與者中隨機抽取200名幸運者,他們的得分(滿分100分)數(shù)據(jù)統(tǒng)計結果如圖:
(1)若此次知識競答得分整體服從正態(tài)分布,用樣本來估計總體,設
,
分別為這200名幸運者得分的平均值和標準差(同一組數(shù)據(jù)用該區(qū)間中點值代替),求
,
的值(
,
的值四舍五入取整數(shù)),并計算
;
(2)在(1)的條件下,為感謝大家積極參與這次活動,對參與此次知識競答的幸運者制定如下獎勵方案:得分低于的獲得1次抽獎機會,得分不低于
的獲得2次抽獎機會.假定每次抽獎中,抽到18元紅包的概率為
,抽到36元紅包的概率為
.已知高三某同學是這次活動中的幸運者,記
為該同學在抽獎中獲得紅包的總金額,求
的分布列和數(shù)學期望,并估算舉辦此次活動所需要抽獎紅包的總金額.
參考數(shù)據(jù):;
;
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】秉承“綠水青山就是金山銀山”的發(fā)展理念,某市環(huán)保部門通過制定評分標準,先對本市50%的企業(yè)進行評估,評出四個等級,并根據(jù)等級給予相應的獎懲,如下表所示:
評估得分 | ||||
評定等級 | 不合格 | 合格 | 良好 | 優(yōu)秀 |
獎勵(萬元) | 20 | 40 | 80 |
(1)環(huán)保部門對企業(yè)抽查評估完成后,隨機抽取了50家企業(yè)的評估得分(分)為樣本,得到如下頻率分布表:
評估得分 | ||||||
頻率 | 0.04 | 0.10 | 0.20 | 0.12 |
其中、
表示模糊不清的兩個數(shù)字,但知道樣本評估得分的平均數(shù)是73.6.現(xiàn)從樣本外的數(shù)百個企業(yè)評估得分中隨機抽取3個,若以樣本中頻率為概率,求至少有兩家企業(yè)的獎勵不少于40萬元的概率;
(2)某企業(yè)為取得一個好的得分,在評估前投入80萬元進行技術改造,由于技術水平問題,被評定為“合格”“良好”和“優(yōu)秀”的概率分別為,
和
,且由此增加的產(chǎn)值分別為20萬元,40萬元和60萬元.設該企業(yè)當年因改造而增加的利潤為
萬元,求
的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在傳染病學中,通常把從致病刺激物侵人機體或者對機體發(fā)生作用起,到機體出現(xiàn)反應或開始呈現(xiàn)該疾病對應的相關癥狀時止的這一階段稱為潛伏期. 一研究團隊統(tǒng)計了某地區(qū)1000名患者的相關信息,得到如下表格:
潛伏期(單位:天) | |||||||
人數(shù) |
(1)求這1000名患者的潛伏期的樣本平均數(shù)x (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表) ;
(2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關系,以潛伏期是否超過6天為標準進行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請將列聯(lián)表補充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認為潛伏期與患者年齡有關;
潛伏期 | 潛伏期 | 總計 | |
| |||
| |||
總計 |
(3)以這1000名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨立,為了深入研究,該研究團隊隨機調(diào)查了20名患者,其中潛伏期超過6天的人數(shù)最有可能(即概率最大)是多少?
附:
,其中
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com