日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•貴陽模擬)如圖所示,在長方體ABCD-A1B1C1D1中,AB=1,BC=2,CC1=5,M為棱CC1上一點.
          (1)若C1M=
          32
          ,求異面直線A1M和C1D1所成角的正切值;
          (2)是否存在這樣的點M使得BM⊥平面A1B1M?若存在,求出C1M的長;若不存在,請說明理由.
          分析:(1)過點M作MN∥C1D,交D1D于N,連接A1N,可得∠A1MN或其補角就是異面直線A1M和C1D1所成角.再在Rt△A1NM中利用勾股定理和正切函數(shù)的定義,即可得到異面直線A1M和C1D1所成角的正切值;
          (2)先假設(shè)存在M點,使得BM⊥平面A1B1M,并設(shè)C1M=x.根據(jù)平面幾何知識Rt△B1MB∽Rt△MB1C1,得到B1MB1B和C1M的比例中項,通過計算可得x=1或4,由此可知存在點M使得BM⊥平面A1B1M.
          解答:解:(1)過點M作MN∥C1D,交D1D于N,連接A1N,
          則∠A1MN或其補角就是異面直線A1M和C1D1所成角
          在Rt△A1NM中,AB=1,A1N=
          22+(
          3
          2
          )2
          =
          5
          2

          ∴tan∠A1MN=
          A1N
          MN
          =
          5
          2

          由此可得,當(dāng)C1M=
          3
          2
          時,異面直線A1M和C1D1所成角的正切值為
          5
          2
          ;
          (2)∵A1B1⊥平面BB1C1C,BM⊆平面BB1C1C,
          ∴A1B1⊥BM,
          因此可得:只要B1M⊥BM,就有BM⊥平面A1B1M.
          假設(shè)存在M點,使得BM⊥平面A1B1M,設(shè)C1M=x
          則矩形BB1C1C中,B1M⊥BM,所以∠MB1C1=∠MBB1
          ∴Rt△B1MB∽Rt△MB1C1,所以
          C1M
          B1M
          =
          B1M
          B1B

          ∴B1M2=B1B•C1M,可得4+x2=5x,解之得x=1或4
          ∴當(dāng)C1M的長為1或4時,存在點M使得BM⊥平面A1B1M.
          點評:本題給出特殊的四棱柱,求異面直線所成角并探索線面垂直的存在性,著重考查了異面直線所成角的求法和線面垂直的判定與性質(zhì)等知識,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•貴陽模擬)若對于任意實數(shù)x,都有x4=a0+a1(x+2)+a2(x+2)2+a3(x+2)3+a4(x+2)4,則a3的值為
          -8
          -8

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•貴陽模擬)直線x-2y+1=0關(guān)于直線x=3對稱的直線方程為
          x+2y-7=0
          x+2y-7=0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•貴陽模擬)若函數(shù)f(x)定義域為R,滿足對任意x1,x2∈R,有f(x1+x2)≤f(x1)+f(x2),則稱f(x)為“V形函數(shù)”;若函數(shù)g(x)定義域為R,g(x)恒大于0,且對任意x1,x2∈R,有l(wèi)gg(x1+x2)≤lgg(x1)+lgg(x2),則稱g(x)為“對數(shù)V形函數(shù)”.
          (1)當(dāng)f(x)=x2時,判斷f(x)是否為V形函數(shù),并說明理由;
          (2)當(dāng)g(x)=x2+2時,證明:g(x)是對數(shù)V形函數(shù);
          (3)若f(x)是V形函數(shù),且滿足對任意x∈R,有f(x)≥2,問f(x)是否為對數(shù)V形函數(shù)?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•貴陽模擬)若實數(shù)a、b、m滿足2a=5b=m,且
          2
          a
          +
          1
          b
          =2
          ,則m的值為
          2
          5
          2
          5

          查看答案和解析>>

          同步練習(xí)冊答案