日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)橢圓M:
          y2
          a2
          +
          x2
          b2
          =1
          (a>b>0)經(jīng)過(guò)點(diǎn)P(1,
          2
          )
          ,其離心率e=
          2
          2

          (Ⅰ)求橢圓M的方程;
          (Ⅱ)直線l:y=
          2
          x+m
          交橢圓于A、B兩點(diǎn),且△PAB的面積為
          2
          ,求m的值.
          (Ⅰ)由已知,得
          (
          2
          )2
          a2
          +
          12
          b2
          =1
          a2=b2+c2
          c
          a
          =
          2
          2
          ,解得
          a=2
          c=
          2
          b=
          2
          ,
          故所求橢圓M的方程為
          y2
          4
          +
          x2
          2
          =1

          (Ⅱ)由
          y=
          2
          x+m
          x2
          2
          +
          y2
          4
          =1
          ,得4x2+2
          2
          mx+m2-4=0
          ,
          由△=(2
          2
          m)2-16(m2-4)>0
          ,解得-2
          2
          <m<2
          2
          ,
          設(shè)A(x1,y1),B(x2,y2),所以x1+x2=-
          2
          2
          m,x1x2=
          m2-4
          4

          所以|AB|=
          1+2
          |x1-x2|=
          3
          (x1+x2)2-4x1x2
          =
          3
          1
          2
          m2-m2+4
          =
          3
          4-
          m2
          2
          ,
          又P到AB的距離為d=
          |m|
          3
          ,
          則S△ABC=
          1
          2
          |AB|•d=
          1
          2
          3
          4-
          m2
          2
          |m|
          3
          =
          1
          2
          m2(4-
          m2
          2
          )
          =
          1
          2
          2
          m2(8-m2)
          ,
          所以
          1
          2
          2
          m2(8-m2)
          =
          2
          ,m4-8m2+16=0,解得m=±2,
          顯然±2∈(-2
          2
          ,2
          2
          )
          ,故m=±2.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          已知定點(diǎn)A(2,0),它與拋物線y2=x上的動(dòng)點(diǎn)P連線的中點(diǎn)M的軌跡方程為_(kāi)_____.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知離心率為
          3
          2
          的橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>o)過(guò)點(diǎn)M(2,1),O為坐標(biāo)原點(diǎn),平行于OM的直線l交橢圓于C不同的兩點(diǎn)A,B.
          (1)求橢圓的C方程.
          (2)證明:若直線MA,MB的斜率分別為k1、k2,求證:k1+k2=0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為e=
          3
          2
          ,且過(guò)點(diǎn)(
          3
          ,
          1
          2

          (Ⅰ)求橢圓的方程;
          (Ⅱ)設(shè)直線l:y=kx+m(k≠0,m>0)與橢圓交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:△OPQ面積的最大值及此時(shí)直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          設(shè)a、b是非零實(shí)數(shù),則方程bx2+ay2=ab及ax+by=0所表示的圖形可能是( 。
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知兩點(diǎn)M(2,0)、N(-2,0),平面上動(dòng)點(diǎn)P滿足由|
          MN
          |•|
          MP
          |+
          MN
          MP
          =0

          (1)求動(dòng)點(diǎn)P的軌跡C的方程.
          (2)是否存在實(shí)數(shù)m使直線x+my-4=0(m∈R)與曲線C交于A、B兩點(diǎn),且OA⊥OB?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知點(diǎn)F是雙曲線C:x2-y2=2的左焦點(diǎn),直線l與雙曲線C交于A、B兩點(diǎn),
          (1)若直線l過(guò)點(diǎn)P(1,2),且
          OA
          +
          OB
          =2
          OP
          ,求直線l的方程.
          (2)若直線l過(guò)點(diǎn)F且與雙曲線的左右兩支分別交于A、B兩點(diǎn),設(shè)
          FB
          FA
          ,當(dāng)λ∈[6,+∞)時(shí),求直線l的斜率k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          過(guò)拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),若|AF|=5,則△AOB的面積為( 。
          A.5B.
          5
          2
          C.
          3
          2
          D.
          17
          8

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知F1,F(xiàn)2為雙曲線
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)的左、右焦點(diǎn).
          (Ⅰ)若點(diǎn)P為雙曲線與圓x2+y2=a2+b2的一個(gè)交點(diǎn),且滿足|PF1|=2|PF2|,求此雙曲線的離心率;
          (Ⅱ)設(shè)雙曲線的漸近線方程為y=±x,F(xiàn)2到漸近線的距離是
          2
          ,過(guò)F2的直線交雙曲線于A,B兩點(diǎn),且以AB為直徑的圓與y軸相切,求線段AB的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案