【題目】已知函數(shù),若關(guān)于
的方程
的不同實(shí)數(shù)根的個(gè)數(shù)為
,則
的所有可能值為( )
A. 3 B. 1或3 C. 3或5 D. 1或3或5
【答案】A
【解析】由題可知f′(x)=(x+3)(x﹣1)ex,
由ex>0可知f(x)在(﹣∞,﹣3)和(1,+∞)上單調(diào)遞增,在(﹣3,1)上單調(diào)遞減.
令f(x)=t,則方程必有兩根t1,t2(t1<t2)且
注意到f(﹣3)=6e﹣3,f(1)=﹣2e,此時(shí)恰有t1=﹣2e, ,滿足題意.
①當(dāng)t1=﹣2e時(shí),有,
此時(shí)f(x)=t1有1個(gè)根,此時(shí)f(x)=t2時(shí)有2個(gè)根;
②當(dāng)t1<﹣2e時(shí),必有,
此時(shí)f(x)=t1有0個(gè)根,此時(shí)f(x)=t2時(shí)有3個(gè)根;
③當(dāng)﹣2e<t1<0時(shí),必有t2>6e﹣3,
此時(shí)f(x)=t1有2個(gè)根,此時(shí)f(x)=t2時(shí)有1個(gè)根;
綜上所述,對(duì)任意的m,關(guān)于x的方程f2(x)﹣mf(x)﹣=0均有3個(gè)不同實(shí)數(shù)根,
故選:A.
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>
,值域?yàn)?/span>
,即
,若
,則稱
在
上封閉.
(1)分別判斷函數(shù),
在
上是否封閉,說(shuō)明理由;
(2)函數(shù)的定義域?yàn)?/span>
,且存在反函數(shù)
,若函數(shù)
在
上封閉,且函數(shù)
在
上也封閉,求實(shí)數(shù)
的取值范圍;
(3)已知函數(shù)的定義域?yàn)?/span>
,對(duì)任意
,若
,有
恒成立,則稱
在
上是單射,已知函數(shù)
在
上封閉且單射,并且滿足
,其中
(
),
,證明:存在
的真子集,
,使得
在所有
(
)上封閉.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(Ⅰ)當(dāng)時(shí),求
的極值;
(Ⅱ)若有2個(gè)不同零點(diǎn),求
的取值范圍;
(Ⅲ)對(duì),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱臺(tái)中,
,
分別是
,
的中點(diǎn),
平面
,
是等邊三角形,
,
,
.
(1)證明: 平面
;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)),設(shè)
與
的交點(diǎn)為
,當(dāng)
變化時(shí),
的軌跡為曲線
.
(1)寫出的普遍方程及參數(shù)方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線
的極坐標(biāo)方程為
,
為曲線
上的動(dòng)點(diǎn),求點(diǎn)
到
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
(限定
).
(1)寫出曲線的極坐標(biāo)方程,并求
與
交點(diǎn)的極坐標(biāo);
(2)射線與曲線
與
分別交于點(diǎn)
(
異于原點(diǎn)),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,
,
,點(diǎn)
是
上的動(dòng)點(diǎn).現(xiàn)將矩形
沿著對(duì)角線
折成二面角
,使得
.
(Ⅰ)求證:當(dāng)時(shí),
;
(Ⅱ)試求的長(zhǎng),使得二面角
的大小為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)K(-1,0)為直線l與拋物線C準(zhǔn)線的交點(diǎn),直線l與拋物線C相交于A,B兩點(diǎn).
(1)求拋物線C的方程;
(2)設(shè)·
=
,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)從某學(xué)校高一年級(jí)男生中隨機(jī)抽取50名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于和
之間,將測(cè)量結(jié)果按如下方式分成6組:第1組
,第2組
,…,第6組
,下圖是按上述分組方法得到的頻率分布直方圖.
(1)求這50名男生身高的中位數(shù),并估計(jì)該校高一全體男生的平均身高;
(2)求這50名男生當(dāng)中身高不低于176的人數(shù),并且在這50名身高不低于176
的男生中任意抽取2人,求這2人身高都低于180
的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com