日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)離心率為 的橢圓 的左、右焦點(diǎn)為 , 點(diǎn)PE上一點(diǎn), , 內(nèi)切圓的半徑為 .

          (1)E的方程;

          (2)矩形ABCD的兩頂點(diǎn)C、D在直線,A、B在橢圓E,若矩形ABCD的周長(zhǎng)為 , 求直線AB的方程.

          【答案】(1);(2.

          【解析】試題分析:

          (1)要求E的方程,需求出。由直角三角形內(nèi)切圓半徑公式可得,所以依題意有,由此解得,從而,由此可得橢圓的方程.

          (2)由于ABCD為矩形,所以有,所以,設(shè)直線的方程為,代入橢圓的方程,整理得,再由弦長(zhǎng)公式得出,又由,由平行線距離公式可得,由,可將化簡(jiǎn)為,再有由已知可得

          即可解出得出直線AB的方程.

          試題解析:

          (1)直角三角形內(nèi)切圓的半徑

          依題意有,由此解得,從而

          故橢圓的方程為

          (2)設(shè)直線的方程為,代入橢圓的方程,整理得,由

          設(shè),則,

          ,由

          所以由已知可得,即,

          整理得,解得(舍去)

          所以直線的方程為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的左,右焦點(diǎn)分別為.過(guò)原點(diǎn)的直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓上的點(diǎn),若, ,且的周長(zhǎng)為.

          (1)求橢圓的方程;

          (2) 設(shè)橢圓在點(diǎn)處的切線記為直線,點(diǎn)上的射影分別為,過(guò)的垂線交軸于點(diǎn),試問(wèn)是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知不等式組 表示的平面區(qū)域?yàn)镈,則
          (1)z=x2+y2的最小值為
          (2)若函數(shù)y=|2x﹣1|+m的圖象上存在區(qū)域D上的點(diǎn),則實(shí)數(shù)m的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某超市為了解顧客的購(gòu)物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購(gòu)物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.

          一次購(gòu)物量

          14

          58

          912

          1316

          17件及以上

          顧客數(shù)(人)

          x

          30

          25

          y

          10

          結(jié)算時(shí)間(分鐘/人)

          1

          1.5

          2

          2.5

          3

          已知這100位顧客中一次購(gòu)物量超過(guò)8件的顧客占55%

          )確定x,y的值,并求顧客一次購(gòu)物的結(jié)算時(shí)間X的分布列與數(shù)學(xué)期望;

          )若某顧客到達(dá)收銀臺(tái)時(shí)前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨(dú)立,求該顧客結(jié)算前的等候時(shí)間不超過(guò)2.5分鐘的概率.

          (注:將頻率視為概率)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列{an}滿(mǎn)足a1=a,an+1= (n∈N*).
          (1)求a2 , a3 , a4
          (2)猜測(cè)數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】對(duì)一批產(chǎn)品的長(zhǎng)度(單位:mm)進(jìn)行抽樣檢測(cè),下圖為檢測(cè)結(jié)果的頻率分布直方圖.根據(jù)標(biāo)準(zhǔn),產(chǎn)品長(zhǎng)度在區(qū)間[20,25)上的為一等品,在區(qū)間[15,20)和區(qū)間[25,30)上的為二等品,在區(qū)間[10,15)和[30,35)上的為三等品.用頻率估計(jì)概率,現(xiàn)從該批產(chǎn)品中隨機(jī)抽取一件,則其為二等品的概率為(
          A.0.09
          B.0.20
          C.0.25
          D.0.45

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)的定義域是D,若存在常數(shù)m、M,使得m≤f(x)≤M對(duì)任意x∈D成立,則稱(chēng)函數(shù)f(x)是D上的有界函數(shù),其中m稱(chēng)為函數(shù)f(x)的下界,M稱(chēng)為函數(shù)f(x)的上界;特別地,若“=”成立,則m稱(chēng)為函數(shù)f(x)的下確界,M稱(chēng)為函數(shù)f(x)的上確界. (Ⅰ)判斷 是否是有界函數(shù)?說(shuō)明理由;
          (Ⅱ)若函數(shù)f(x)=1+a2x+4x(x∈(﹣∞,0))是以﹣3為下界、3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍;
          (Ⅲ)若函數(shù) ,T(a)是f(x)的上確界,求T(a)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù) ,其中 (為自然對(duì)數(shù)的底數(shù)).

          (Ⅰ)討論函數(shù)的單調(diào)性,并寫(xiě)出相應(yīng)的單調(diào)區(qū)間;

          (Ⅱ)設(shè),若函數(shù)對(duì)任意都成立,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知對(duì)任意平面向量 =(x,y),把 繞其起點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)θ角得到的向量 =(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)θ得到點(diǎn)P.
          (1)已知平面內(nèi)點(diǎn)A(2,3),點(diǎn)B(2+2 ,1).把點(diǎn)B繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn) 角得到點(diǎn)P,求點(diǎn)P的坐標(biāo).
          (2)設(shè)平面內(nèi)曲線C上的每一點(diǎn)繞坐標(biāo)原點(diǎn)沿順時(shí)針?lè)较蛐D(zhuǎn) 后得到的點(diǎn)的軌跡方程是曲線y= ,求原來(lái)曲線C的方程.

          查看答案和解析>>