日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,三棱錐ABCD中,AB平面BCDCDBD .

          1求證:CD平面ABD;

          2ABBDCD1,MAD中點(diǎn),求三棱錐AMBC的體積.

          【答案】1詳見解析2

          【解析】

          試題分析:證明:CD平面ABD,只需證明ABCD;利用轉(zhuǎn)換底面,VA-MBC=VC-ABM=SABMCD,即可求出三棱錐A-MBC的體積

          試題解析:1AB平面BCD,CD平面BCD

          ABCD.

          CDBD,ABBDB,

          AB平面ABD,BD平面ABD,

          CD平面ABD.

          2法一:由AB平面BCD,得ABBD,

          ABBD1SABD.

          MAD的中點(diǎn),

          SABMSABD

          1知,CD平面ABD,

          三棱錐CABM的高hCD1

          因此三棱錐AMBC的體積

          VAMBCVCABMSABM·h.

          法二:由AB平面BCD知,平面ABD平面BCD,又平面ABD平面BCDBD,如圖,過點(diǎn)MMNBDBD于點(diǎn)N,則MN平面BCD,且MNAB,又CDBD,BDCD1

          SBCD.

          三棱錐AMBC的體積

          VAMBCVABCDVMBCD

          AB·SBCDMN·SBCD

          .

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男3020),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)

          幾何題

          代數(shù)題

          總計

          男同學(xué)

          22

          8

          30

          女同學(xué)

          8

          12

          20

          總計

          30

          20

          50

          1)能否據(jù)此判斷有975%的把握認(rèn)為視覺和空間能力與性別有關(guān)?

          2)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進(jìn)行全程研究,記甲、乙兩女生被抽到的人數(shù)為X,求X的分布列及數(shù)學(xué)期望EX).

          附表及公式:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,橢圓C長軸長為4.

          (1)求橢圓的方程;

          (2)已知直線與橢圓交于A,B兩點(diǎn),是否存在實(shí)數(shù)k使得以線段AB 為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請說明理由

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,橢圓上任意一點(diǎn)到右焦點(diǎn)的距離的最大值為.

          1)求橢圓的方程;

          2)已知點(diǎn)是線段上異于的一個定點(diǎn)(為坐標(biāo)原點(diǎn)),是否存在過點(diǎn)且與軸不垂直的直線與橢圓交于兩點(diǎn),使得,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】有一座大橋既是交通擁擠地段,又是事故多發(fā)地段,為了保證安全,交通部門規(guī)定:大橋上的車距與車速和車長的關(guān)系滿足為正的常數(shù)).假定車身長為,當(dāng)車速為時,車距為個車身長.

          (1)寫出車距關(guān)于車速的函數(shù)關(guān)系式;

          (2)應(yīng)規(guī)定怎樣的車速,才能使大橋上每小時通過的車輛最多?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知動直線過點(diǎn),且與圓交于兩點(diǎn).

          (1)若直線的斜率為,求的面積;

          (2)若直線的斜率為,點(diǎn)是圓上任意一點(diǎn),求的取值范圍;

          (3)是否存在一個定點(diǎn)(不同于點(diǎn)),對于任意不與軸重合的直線,都有平分,若存在,求出定點(diǎn)的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在四棱錐PABCD中,底面是邊長為a的正方形,側(cè)棱PDa,PAPCa

          (1)求證:PD⊥平面ABCD;

          (2)求證:平面PAC⊥平面PBD;

          (3)求二面角PACD的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)E為正方形ABCDCD上異于點(diǎn)C,D的動點(diǎn),將ADE沿AE翻折成SAE,使得平面SAE平面ABCE,則下列三個說法中正確的個數(shù)是

          存在點(diǎn)E使得直線SA平面SBC

          平面SBC內(nèi)存在直線與SA平行

          平面ABCE內(nèi)存在直線與平面SAE平行

          A.0 B.1 C.2 D.3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn1.

          (1)求數(shù)列{bn}的通項公式;

          (2)cn,Tn是數(shù)列{cn}的前n項和,求證:

          查看答案和解析>>

          同步練習(xí)冊答案