【題目】己知函數(shù)的定義域是
,對(duì)任意的
,有
.當(dāng)
時(shí),
.給出下列四個(gè)關(guān)于函數(shù)
的命題:
①函數(shù)是奇函數(shù);
②函數(shù)是周期函數(shù);
③函數(shù)的全部零點(diǎn)為
,
;
④當(dāng)算時(shí),函數(shù)
的圖象與函數(shù)
的圖象有且只有4個(gè)公共點(diǎn).
其中,真命題的個(gè)數(shù)為( )
A.1B.2C.3D.4
【答案】B
【解析】
由周期函數(shù)的定義得到②正確;,可以得到函數(shù)
不是奇函數(shù),故①錯(cuò)誤;
,又
是周期為2的函數(shù),可得③正確;求出
的根即可判斷④錯(cuò)誤,從而得解.
∵對(duì)任意的,有
,∴對(duì)任意的
,
,
∴是周期為2的函數(shù),
∴,
又∵當(dāng)時(shí),
,∴
,∴函數(shù)
不是奇函數(shù),故①錯(cuò)誤,②正確.
當(dāng)時(shí),
,∴
,又∵
是周期為2的函數(shù),∴函數(shù)
的全部零點(diǎn)為
,
,故③正確.
∵當(dāng)時(shí),
,令
,解得
(舍)或
;
當(dāng)時(shí),
,令
,則
,解得
或
(舍);
當(dāng)時(shí),
,令
,則
,解得
或
(舍),
∴共有3個(gè)公共點(diǎn),故④錯(cuò)誤.
因此真命題的個(gè)數(shù)為2個(gè).
故選:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)關(guān)于的不等式
的解集為
,求
的值;
(2)若函數(shù)的圖象與
軸圍成圖形的面積不小于50,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)),設(shè)
與
的交點(diǎn)為
,當(dāng)
變化時(shí),
的軌跡為曲線
.
(1)寫(xiě)出的普遍方程及參數(shù)方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線
的極坐標(biāo)方程為
,
為曲線
上的動(dòng)點(diǎn),求點(diǎn)
到
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中,將四個(gè)面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑中,
平面
,
,且
,過(guò)
點(diǎn)分別作
于點(diǎn)
,
于點(diǎn)
,連接
,則三棱錐
的體積的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為抗擊新型冠狀病毒,普及防護(hù)知識(shí),某校開(kāi)展了“疫情防護(hù)”網(wǎng)絡(luò)知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加該活動(dòng)的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(jī)(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.
(1)求的值,并估計(jì)這100名學(xué)生的平均成績(jī)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(2)在抽取的100名學(xué)生中,規(guī)定:比賽成績(jī)不低于80分為“優(yōu)秀”,比賽成績(jī)低于80分為“非優(yōu)秀”.請(qǐng)將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為“比賽成績(jī)是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | 40 | ||
女生 | 50 | ||
合計(jì) | 100 |
參考公式及數(shù)據(jù):.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,橢圓
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求經(jīng)過(guò)橢圓右焦點(diǎn)
且與直線
垂直的直線的極坐標(biāo)方程;
(2)若為橢圓
上任意-點(diǎn),當(dāng)點(diǎn)
到直線
距離最小時(shí),求點(diǎn)
的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋子中有大小、形狀完全相同的四個(gè)小球,分別寫(xiě)有“和”、“諧”、“!、“園”四個(gè)字,有放回地從中任意摸出一個(gè)小球,直到“和”、“諧”兩個(gè)字都摸到就停止摸球,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止摸球的概率。利用電腦隨機(jī)產(chǎn)生到
之間取整數(shù)值的隨機(jī)數(shù),分別用
,
,
,
代表“和”、“諧”、“!、“園”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下
組隨機(jī)數(shù):
由此可以估計(jì),恰好第三次就停止摸球的概率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程和直線
的直角坐標(biāo)方程;
(2)設(shè)直線與
,
軸的交點(diǎn)分別為
,
,若點(diǎn)
在曲線
位于第一象限的圖象上運(yùn)動(dòng),求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中e是自然對(duì)數(shù)的底數(shù),a,
)在點(diǎn)
處的切線方程是
.
(1)求函數(shù)的單調(diào)區(qū)間.
(2)設(shè)函數(shù),若
在
上恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com