日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖, 為圓的直徑,點, 在圓上, ,矩形和圓所在的平面互相垂直,已知,

          (Ⅰ)求證:平面平面;

          (Ⅱ)求直線與平面所成角的大;

          (Ⅲ)當的長為何值時,二面角的大小為

          【答案】(1)證明見解析;(2;(3

          【解析】試題分析:(1)利用面面垂直的性質(zhì),可得平面,再利用線面垂直的判定,證明平面,從而利用面面垂直的判定可得平面平面;(2)確定為直線與平面所成的角,過點,交,計算,即可求得直線與平面所成角的大。唬3)建立空間直角坐標系,求出平面的法向量,平面的一個法向量,利用向量的夾角公式,即可求得的長.

          試題解析:(1平面平面,

          平面平面平面,

          平面,

          為圓的直徑,,平面

          平面,平面平面

          2)根據(jù)(1)的證明,有平面,

          在平面內(nèi)的射影,

          因此, 為直線與平面所成的角,

          ,四邊形為等腰梯形,過點,交

          ,則

          中,根據(jù)射影定理,得

          ,,

          直線與平面所成角的大小為30°

          3

          中點為,以為坐標原點, 方向分別為軸、軸、軸方向建立空間直角坐標系(如圖).設,則點的坐標為,則,又,,

          設平面的法向量為,則,即,

          ,解得

          由(1)可知平面,取平面的一個法向量為,

          ,即,解得

          因此,當的長為時,平面與平面所成的銳二面角的大小為60°.....12

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知命題p:關(guān)于x的不等式x2+2ax+4>0,對一切x∈R恒成立,q:函數(shù)f(x)=(3﹣2a)x是增函數(shù),若p或q為真,p且q為假,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知菱形ABCD的邊長為2,∠BAD=120°,點E,F(xiàn)分別在邊BC,DC上, ,若 =1, =﹣ ,則λ+μ=(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設函數(shù)f(x)= cos2x+sin2(x+ ). (Ⅰ)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
          (Ⅱ)當x∈[﹣ , )時,求f(x)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示,函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )離y軸最近的零點與最大值均在拋物線y=﹣ x2+ x+1上,則f(x)=( )

          A.
          B.

          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是菱形,∠BAD=60°,側(cè)面SAB⊥底面ABCD,并且SA=SB=AB=2,F(xiàn)為SD的中點.
          (1)求三棱錐S﹣FAC的體積;
          (2)求直線BD與平面FAC所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓C1 的離心率為 ,焦距為 ,拋物線C2:x2=2py(p>0)的焦點F是橢圓C1的頂點. (Ⅰ)求C1與C2的標準方程;
          (Ⅱ)C1上不同于F的兩點P,Q滿足 ,且直線PQ與C2相切,求△FPQ的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知, .

          (1)討論函數(shù)的單調(diào)性;

          (2)記,設, 為函數(shù)圖象上的兩點,且.

          (i)當時,若 處的切線相互垂直,求證: ;

          (ii)若在點, 處的切線重合,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=2 ,則使得f(2x)>f(x﹣3)成立的x的取值范圍是(
          A.(﹣∞,﹣3)
          B.(1,+∞)
          C.(﹣3,﹣1)
          D.(﹣∞,﹣3)∪(1,+∞)

          查看答案和解析>>

          同步練習冊答案