日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知三棱柱ABC-A1B1C1的各棱長均為2,P是BC的中點,側(cè)面ACC1A1⊥底面ABC,且側(cè)棱AA1與底面ABC所成的角為60°,
          (Ⅰ)證明:直線A1C∥平面AB1P;
          (Ⅱ)求直線AB1與平面ACC1A1所成角的正弦值。
          解:(Ⅰ)連接A1B交AB1于Q,
          則Q為A1B中點,連結(jié)PQ,
          ∵P是BC的中點,
          ∴PQ∥A1C,
          ∵PQ平面AB1P,A1C 平面AB1P,
          ∴A1C∥平面AB1P。
          (Ⅱ)取中點M,連、AM,
          ,
          ∵平面平面ABC,
          ∴平面平面,
          平面,
          為直線與平面所成的角, 
          在正中,邊長為2,M是中點,
          ,
          ∵面平面ABC,
          與平面ABC所成的角,即,
          在菱形中,邊長為2,
          ,M是中點,

          ,
          中,,,
          從而,
          ,
          ∴直線與平面所成角的正弦值為
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AC=BC=2,AA1=4,AB=2
          2
          ,M,N分別是棱CC1,AB中點.
          (Ⅰ)求證:CN⊥平面ABB1A1
          (Ⅱ)求證:CN∥平面AMB1;
          (Ⅲ)求三棱錐B1-AMN的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,且AB⊥AC,M是CC1的中點,N是BC的中點,點P在直線A1B1上,且滿足
          A1P
          A1B1

          (1)證明:PN⊥AM;
          (2)當(dāng)λ取何值時,直線PN與平面ABC所成的角θ最大?并求該角最大值的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,AB⊥AC,M,N分別是CC1,BC的中點,點P在直線A1B1上,且
          A1P
          A1B1
          ;
          (Ⅰ)證明:無論λ取何值,總有AM⊥PN;
          (Ⅱ)當(dāng)λ取何值時,直線PN與平面ABC所成的角θ最大?并求該角取最大值時的正切值;
          (Ⅲ)是否存在點P,使得平面PMN與平面ABC所成的二面角為30°,若存在,試確定點P的位置,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知三棱柱ABC-A1B1C1的所有棱長均為2,且A1A⊥底面ABC,D為AB的中點,G為△ABC1的重心,則|
          CG
          |的值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC,∠ABC=90°,D為AC中點.
          (1)求證:BD⊥AC1;
          (2)若AB=
          2
          ,AA1=2
          3
          ,求AC1與平面ABC所成的角.

          查看答案和解析>>

          同步練習(xí)冊答案