日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,且AB⊥AC,M是CC1的中點,N是BC的中點,點P在直線A1B1上,且滿足
          A1P
          A1B1

          (1)證明:PN⊥AM;
          (2)當λ取何值時,直線PN與平面ABC所成的角θ最大?并求該角最大值的正切值.
          分析:(1)以AB,AC,AA1分別為x,y,z軸,建立空間直角坐標系A(chǔ)-xyz,分別求出
          PN
          AM
          的坐標,要證PN⊥AM,只需求證它們的數(shù)量積為零即可;
          (2)過P作PE⊥AB于E,連接EN,則∠PNE為直線PN與平面ABC所成的角θ,求出此角的正切值,然后研究其最大值即可求出λ的值.
          解答:解:(1)以AB,AC,AA1分別為x,y,z軸,建立空間直角坐標系A(chǔ)-xyz
          則(λ,0,1),N(
          1
          2
          ,
          1
          2
          ,0),M(0,1,
          1
          2

          從而
          PN
          =(
          1
          2
          1
          2
          ,-1),
          AM
          =(0,1,
          1
          2

          PN
          AM
          =(
          1
          2
          -λ)×0+
          1
          2
          ×1
          -1×
          1
          2
          =0
          所以PN⊥AM(6分)

          (2)過P作PE⊥AB于E,連接EN,則PE⊥面ABC,
          則∠PNE為所求角θ,
          所以tanθ=
          PE
          EN
          =
          1
          EN
          ,因為當E在AB中點時,ENmin=
          1
          2
          .(tanθ)max=2
          此時,λ=
          1
          2
          .(12分)
          點評:本題主要考查了直線與平面所成的角,以及直線與平面垂直的性質(zhì),考查空間想象能力,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AC=BC=2,AA1=4,AB=2
          2
          ,M,N分別是棱CC1,AB中點.
          (Ⅰ)求證:CN⊥平面ABB1A1;
          (Ⅱ)求證:CN∥平面AMB1;
          (Ⅲ)求三棱錐B1-AMN的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,AB⊥AC,M,N分別是CC1,BC的中點,點P在直線A1B1上,且
          A1P
          A1B1

          (Ⅰ)證明:無論λ取何值,總有AM⊥PN;
          (Ⅱ)當λ取何值時,直線PN與平面ABC所成的角θ最大?并求該角取最大值時的正切值;
          (Ⅲ)是否存在點P,使得平面PMN與平面ABC所成的二面角為30°,若存在,試確定點P的位置,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知三棱柱ABC-A1B1C1的所有棱長均為2,且A1A⊥底面ABC,D為AB的中點,G為△ABC1的重心,則|
          CG
          |的值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC,∠ABC=90°,D為AC中點.
          (1)求證:BD⊥AC1;
          (2)若AB=
          2
          ,AA1=2
          3
          ,求AC1與平面ABC所成的角.

          查看答案和解析>>

          同步練習(xí)冊答案