日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,PA⊥平面ABCD,F(xiàn)是BC的中點(diǎn).
          (1)求證:DA⊥平面PAC;
          (2)試在線段PD上確定一點(diǎn)G,使CG∥平面PAF,并說(shuō)明理由.

          【答案】分析:(1)利用平行四邊形的性質(zhì)和平行線的性質(zhì)可得AD⊥AC,再利用線面垂直的性質(zhì)可得PA⊥AC,利用線面垂直的判定定理即可證明;
          (2)設(shè)PD的中點(diǎn)為G,在平面PAD內(nèi)作GH⊥PA于H,利用三角形的中位線定理可得GH,進(jìn)而得到平行四邊形CFGH,得到GC∥FH,利用線面平行的判定定理即可證明.
          解答:(1)證明:∵四邊形ABCD是平行四邊形,
          ∴BC∥AD,
          ∴∠ACB=∠DAC=90°,∴DA⊥AC.
          ∵PA⊥平面ABCD,
          ∴PA⊥DA,又AC⊥DA,AC∩PA=A,
          ∴DA⊥平面PAC.
          (Ⅱ)設(shè)PD的中點(diǎn)為G,在平面PAD內(nèi)作GH⊥PA于H,則GH,
          連接FH,則四邊形FCGH為平行四邊形,
          ∴GC∥FH,
          ∵FH?平面PAE,CG?平面PAE,
          ∴CG∥平面PAE,
          ∴G為PD中點(diǎn)時(shí),CG∥平面PAE.
          點(diǎn)評(píng):熟練掌握平行四邊形的性質(zhì)和平行線的性質(zhì)、線面垂直的性質(zhì)、判定定理、三角形的中位線定理、平行四邊形判定與性質(zhì)定理、線面平行的判定定理是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,PG⊥平面ABC,垂足G在AD上,且AG=
          1
          3
          GD,GB⊥GC.GB=GC=2,PG=4
          ,E是BC的中點(diǎn).
          (1)求證:PC⊥BG;
          (2)求異面直線GE與PC所成角的余弦值;
          (3)若F是PC上一點(diǎn),且DF⊥GC,求
          CF
          CP
          的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:上海市模擬題 題型:解答題

          如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ABC=90°,PA⊥平面ABCD,PA=BC=1,AB=,F(xiàn)是BC的中點(diǎn).
          (1)求證:DA⊥平面PAC;
          (2)試在線段PD上確定一點(diǎn)G,使CG∥平面PAF,并求三棱錐A-CDG的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:浙江省模擬題 題型:解答題

          已知如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,PG⊥平面ABC,垂足G在AD上,且AG=GD,GB⊥GC,GB=GC=2,PC=4,E是BC的中點(diǎn).
          (Ⅰ)求證:PC⊥BG;
          (Ⅱ)求異面直線GE與PC所成角的余弦值;
          (Ⅲ)若F是PC上一點(diǎn),且DF⊥GC,求的值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,四棱錐P—ABCD中,PA⊥平面ABCD,AD∥BC,∠ABC=90°,PA=AB=1,AD=3,且∠ADC=arcsin.求:

          (1)三棱錐P—ACD的體積;

          (2)直線PC與AB所成角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012年浙江省高考數(shù)學(xué)沖刺試卷A(理科)(解析版) 題型:解答題

          已知如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,PG⊥平面ABC,垂足G在AD上,且,E是BC的中點(diǎn).
          (1)求證:PC⊥BG;
          (2)求異面直線GE與PC所成角的余弦值;
          (3)若F是PC上一點(diǎn),且的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案