日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】動(dòng)點(diǎn)在拋物線上,過點(diǎn)垂直于軸,垂足為,設(shè).

          求點(diǎn)的軌跡的方程;

          設(shè)點(diǎn),過點(diǎn)的直線交軌跡兩點(diǎn),直線的斜率分別為,求的最小值

          【答案】; 1

          【解析】

          試題分析:考慮點(diǎn)和點(diǎn)的關(guān)系,設(shè)點(diǎn),由可把表示出來,再把代入已知拋物線方程即得; 分析題意知直線斜率存在,設(shè)方程為,設(shè)點(diǎn) 由直線方程與曲線方程聯(lián)立方程組,消去的一元二次方程,則可得,當(dāng)過點(diǎn)時(shí),不妨設(shè),則可以看作是曲線在A點(diǎn)處切線的斜率,則可計(jì)算出,當(dāng)不過點(diǎn)時(shí),計(jì)算,最后計(jì)算,交把代入得到關(guān)于的函數(shù),可求得最小值.

          試題解析:設(shè)點(diǎn),則由,因?yàn)辄c(diǎn)在拋物線上,

          方法一:由已知,直線的斜率一定存在,設(shè)點(diǎn),設(shè)方程為,

          聯(lián)立

          由韋達(dá)定理得

          1當(dāng)直線經(jīng)過點(diǎn)時(shí),當(dāng)時(shí),直線的斜率看作拋物線在點(diǎn)處的切線斜率,則,此時(shí);當(dāng)時(shí),同理可得.

          2當(dāng)直線不經(jīng)過點(diǎn)時(shí),,

          所以的最小值為.

          方法二:同上

          ,所以的最小值為

          方法三:設(shè)點(diǎn),由直線過點(diǎn)交軌跡兩點(diǎn)得:

          化簡整理得:

          ,令,則

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)數(shù)列的前項(xiàng)和為,點(diǎn)均在函數(shù)的圖象上.

          (1)求證:數(shù)列為等差數(shù)列;

          (2)設(shè)是數(shù)列的前項(xiàng)和,求使對所有都成立的最小正整數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知在銳角△ABC中,兩向量p=(2-2sin A,cos A+sin A),q=(sin A-cos A,1+sin A),且pq是共線向量.

          (1)求A的大;

          (2)求函數(shù)y=2sin2B+cos(取最大值時(shí),角B的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知中心在坐標(biāo)原點(diǎn)的橢圓經(jīng)過點(diǎn),且點(diǎn)為其右焦點(diǎn).

          )求橢圓的標(biāo)準(zhǔn)方程;

          )是否存在平行于的直線,使得直線與橢圓有公共點(diǎn),且直線的距離等于4?若存在,求出直線的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某投資商到一開發(fā)區(qū)投資72萬元建起一座蔬菜加工廠,第一年共支出12萬元,以后每年支出增加4萬元,從第一年起每年的蔬菜銷售收入均為50萬元,設(shè)表示前年的純利潤總和=前年的總收入年的總支出投資額.

          1該廠從第幾年開始盈利?

          2若干年后,投資商為開發(fā)新項(xiàng)目,對該廠有兩種處理方案:

          當(dāng)年平均利潤達(dá)到最大時(shí),以48萬元出售該廠;

          當(dāng)純利潤總和達(dá)到最大時(shí),以16萬元出售該廠,

          問哪種方案更合算?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐的底面是平行四邊形,,,,,設(shè)中點(diǎn),點(diǎn)在線段上,且

          (1)求證:平面;

          (2)設(shè)異面直線的夾角為,若,求的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)的對稱軸為,.

          1)求函數(shù)的最小值及取得最小值時(shí)的值;

          2)試確定的取值范圍,使至少有一個(gè)實(shí)根;

          3)若,存在實(shí)數(shù),對任意,使恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】水培植物需要一種植物專用營養(yǎng)液.已知每投放)個(gè)單位的營養(yǎng)液,它在水中釋放的濃度(克/升)隨著時(shí)間(天)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時(shí)刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應(yīng)時(shí)刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中營養(yǎng)液的濃度不低于4(克/升)時(shí),它才能有效.

          (1)若只投放一次4個(gè)單位的營養(yǎng)液,則有效時(shí)間可能達(dá)幾天?

          (2)若先投放2個(gè)單位的營養(yǎng)液,3天后投放個(gè)單位的營養(yǎng)液.要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1當(dāng)時(shí),討論的單調(diào)性;

          2若對任意的,恒有成立,求實(shí)數(shù)的取值范圍

          查看答案和解析>>

          同步練習(xí)冊答案