日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓,,分別是橢圓短軸的上下兩個(gè)端點(diǎn),是橢圓的左焦點(diǎn),P是橢圓上異于點(diǎn),的點(diǎn),若的邊長為4的等邊三角形.

          寫出橢圓的標(biāo)準(zhǔn)方程;

          當(dāng)直線的一個(gè)方向向量是時(shí),求以為直徑的圓的標(biāo)準(zhǔn)方程;

          設(shè)點(diǎn)R滿足:,,求證:的面積之比為定值.

          【答案】(1);(2);(3)證明見解析

          【解析】

          是邊長為4的等邊三角形得,進(jìn)一步求得,則橢圓方程可求;

          由直線的一個(gè)方向向量是,可得直線所在直線的斜率,得到直線的方程,由橢圓方程聯(lián)立,求得P點(diǎn)坐標(biāo),得到的中點(diǎn)坐標(biāo),再求出,可得以為直徑的圓的半徑,則以為直徑的圓的標(biāo)準(zhǔn)方程可求;

          方法一、設(shè)求出直線的斜率,進(jìn)一步得到直線的斜率,得到直線的方程,同理求得直線的方程,聯(lián)立兩直線方程求得R的橫坐標(biāo),再結(jié)合在橢圓上可得的關(guān)系,由求解;

          方法二、設(shè)直線的斜率為k,得直線的方程為結(jié)合,可得直線的方程為,把與橢圓方程聯(lián)立可得,再由在橢圓上,得到,從而得到,得結(jié)合,可得直線的方程為與線的方程聯(lián)立求得再由求解.

          解:如圖,由的邊長為4的等邊三角形,得,且

          橢圓的標(biāo)準(zhǔn)方程為;

          解:直線的一個(gè)方向向量是,

          直線所在直線的斜率,則直線的方程為,

          聯(lián)立,得,

          解得,

          的中點(diǎn)坐標(biāo)為

          則以為直徑的圓的半徑

          為直徑的圓的標(biāo)準(zhǔn)方程為;

          證明:方法一、設(shè)

          直線的斜率為,由,得直線的斜率為

          于是直線的方程為:

          同理,的方程為:

          聯(lián)立兩直線方程,消去y,得

          在橢圓上,

          ,從而

          ,

          方法二、設(shè)直線,的斜率為k,,則直線的方程為

          ,直線的方程為,

          代入,得,

          是橢圓上異于點(diǎn)的點(diǎn),,從而

          在橢圓上,

          ,從而

          ,得

          ,直線的方程為

          聯(lián)立,解得,即

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如右圖,一個(gè)直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時(shí)針方

          向滾動(dòng),MN是小圓的一條固定直徑的兩個(gè)端點(diǎn).那么,當(dāng)小圓這

          樣滾過大圓內(nèi)壁的一周,點(diǎn)M,N在大圓內(nèi)所繪出的圖形大致是( )

          A.B.

          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一種作圖工具如圖1所示.是滑槽的中點(diǎn),短桿可繞轉(zhuǎn)動(dòng),長桿通過處鉸鏈與連接,上的栓子可沿滑槽AB滑動(dòng),且,.當(dāng)栓子在滑槽AB內(nèi)作往復(fù)運(yùn)動(dòng)時(shí),帶動(dòng)轉(zhuǎn)動(dòng)一周(不動(dòng)時(shí),也不動(dòng)),處的筆尖畫出的曲線記為.以為原點(diǎn),所在的直線為軸建立如圖2所示的平面直角坐標(biāo)系.

          )求曲線C的方程;

          )設(shè)動(dòng)直線與兩定直線分別交于兩點(diǎn).若直線總與曲線有且只有一個(gè)公共點(diǎn),試探究:的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】四色猜想是世界三大數(shù)學(xué)猜想之一,1976年數(shù)學(xué)家阿佩爾與哈肯證明,稱為四色定理.其內(nèi)容是:“任意一張平面地圖只用四種顏色就能使具有共同邊界的國家涂上不同的顏色.”用數(shù)學(xué)語言表示為“將平面任意地細(xì)分為不相重疊的區(qū)域,每一個(gè)區(qū)域總可以用,,,四個(gè)數(shù)字之一標(biāo)記,而不會(huì)使相鄰的兩個(gè)區(qū)域得到相同的數(shù)字.”如圖,網(wǎng)格紙上小正方形的邊長為,粗實(shí)線圍城的各區(qū)域上分別標(biāo)有數(shù)字,,的四色地圖符合四色定理,區(qū)域和區(qū)域標(biāo)記的數(shù)字丟失.若在該四色地圖上隨機(jī)取一點(diǎn),則恰好取在標(biāo)記為的區(qū)域的概率所有可能值中,最大的是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知px2≤5x-4,qx2-(a+2)x+2a≤0.

          (1)p是真命題,求對(duì)應(yīng)x的取值范圍;

          (2)pq的必要不充分條件,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),以原點(diǎn)O為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;

          2)設(shè)P0,-1),直線lC的交點(diǎn)為M,N,線段MN的中點(diǎn)為Q,求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,數(shù)列為等比數(shù)列,且,,.

          (1)求數(shù)列、的通項(xiàng)公式;

          (2)設(shè)數(shù)列是由所有的項(xiàng),且的項(xiàng)組成的數(shù)列,且原項(xiàng)數(shù)先后順序保持不變,求數(shù)列的前2019項(xiàng)的和

          (3)對(duì)任意給定的是否存在使成等差數(shù)列?若存在,用分別表示(只要寫出一組即可);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,過點(diǎn)的直線為參數(shù))與曲線相交于點(diǎn),兩點(diǎn).

          (1)求曲線的平面直角坐標(biāo)系方程和直線的普通方程;

          (2)求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】圖一是美麗的勾股樹,它是一個(gè)直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1勾股樹,重復(fù)圖二的作法,得到圖三為第2勾股樹,以此類推,已知最大的正方形面積為1,則第勾股樹所有正方形的個(gè)數(shù)與面積的和分別為(

          A. B. C. D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案