日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且AF=
          12
          AD=a,G是EF的中點(diǎn),
          (1)求證平面AGC⊥平面BGC;
          (2)求GB與平面AGC所成角的正弦值.
          分析:(1)由面面垂直的性質(zhì)證明CB⊥AG,用勾股定理證明AG⊥BG,得到AG⊥平面CBG,從而結(jié)論得到證明.
          (2)由(Ⅰ)知面AGC⊥面BGC,在平面BGC內(nèi)作BH⊥GC,垂足為H,則BH⊥平面AGC,故∠BGH是GB與平面AGC所成的角,
          解Rt△CBG,可得GB與平面AGC所成角的正弦值.
          解答:(1)證明:正方形ABCD?CB⊥AB,∵面ABCD⊥面ABEF且交于AB,∴CB⊥面ABEF.
          ∵AG,GB?面ABEF,∴CB⊥AG,CB⊥BG,又AD=2a,AF=a,ABEF是矩形,G是EF的中點(diǎn),
          ∴AG=BG=
          2a
          ,AB=2a,AB2=AG2+BG2,∴AG⊥BG,
          ∵BG∩BC=B,∴AG⊥平面CBG,而AG?面AGC,故平面AGC⊥平面BGC.

          (2)解:如圖,由(Ⅰ)知面AGC⊥面BGC,且交于GC,
          在平面BGC內(nèi)作BH⊥GC,垂足為H,則BH⊥平面AGC,∴∠BGH是GB與平面AGC所成的角.
          ∴在Rt△CBG中BH=
          BC•BG
          CG
          =
          BC•BG
          BC2+BG2
          =
          2
          3
          3
          a
          ,又BG=
          2
          a
          ,
          sin∠BGH=
          BH
          BG
          =
          6
          3
          點(diǎn)評:本題考查面面垂直的判定方法,以及求線面成的角的求法,體現(xiàn)轉(zhuǎn)化的思想.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且AF=
          12
          AD=a
          ,G是EF的中點(diǎn).
          (1)求證:平面AGC⊥平面BGC;
          (2)求二面角B-AC-G的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2010•河?xùn)|區(qū)一模)如圖,平面ABCD⊥平面ABEF,ABCD是正方形.ABEF是矩形,G是線段EF的中點(diǎn),且B點(diǎn)在平面ACG內(nèi)的射影在CG上.
          (1)求證:AG上平面BCG;
          (2)求直線BE與平面ACG所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,平面ABCD⊥平面ABEF,四邊形ABCD是正方形,四邊形ABEF是矩形,且AF=
          1
          2
          AD=a,G是EF的中點(diǎn),則GB與平面AGC所成角的正弦值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,平面ABCD⊥平面ABEF,四邊形ABCD是正方形,四邊形ABEF是矩形,且AF=
          3
          2
          AD
          ,G是EF的中點(diǎn),則GB與平面AGC所成角的正弦值為( 。
          A、
          6
          6
          B、
          21
          6
          C、
          7
          7
          D、
          21
          7

          查看答案和解析>>

          同步練習(xí)冊答案