日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知(
          3x
          +2x2)2n
          的展開(kāi)式的二項(xiàng)式系數(shù)和比(3x-2)n的展開(kāi)式的系數(shù)和大1023.求(2x-
          1
          x
          )2n
          的展開(kāi)式中:
          (1)二項(xiàng)式系數(shù)最大的項(xiàng);(2)系數(shù)的絕對(duì)值最大的項(xiàng).
          分析:(1)對(duì)x進(jìn)行賦值,令x=1,即可得到關(guān)于n的方程,求出n,根據(jù)二項(xiàng)式系數(shù)的性質(zhì)即可求出二項(xiàng)式系數(shù)最大的項(xiàng)
          (2)設(shè)出第r+1項(xiàng)為系數(shù)的絕對(duì)值最大的項(xiàng),即可列出關(guān)于r的不等式
          C10r210-rC10(r-1)210-r+1
          C10r210-rC10(r+1)210-r-1
          ,即可求解
          解答:解:由題意可得,(
          3x
          +2x2)2n
          的展開(kāi)式的二項(xiàng)式系數(shù)和22n
          在(3x-2)n中,令x=1可得展開(kāi)式的系數(shù)和為1
          ∴22n-1=1023
          ∴n=5,(2x-
          1
          x
          )2n
          的展開(kāi)式的通項(xiàng)Tr+1=
          C
          r
          10
          (2x)10-r(-
          1
          x
          )
          r
          =(-1)r210-r
          C
          r
          10
          x10-2r
           
          (1)當(dāng)n=5時(shí)2n=10,(2x-
          1
          x
          )2n
          的展開(kāi)式中共有11項(xiàng),二項(xiàng)式系數(shù)最大項(xiàng)為r=5時(shí),即第6項(xiàng),T6=
          - 32C
          5
          10

          (2)要求(2x-
          1
          x
          )2n
          的展開(kāi)式中系數(shù)的絕對(duì)值最大的項(xiàng),只要求(2x+
          1
          x
          )
          10
          展開(kāi)式中系數(shù)最大的值
          由 
          C10r210-rC10(r-1)210-r+1
          C10r210-rC10(r+1)210-r-1
          ,
          1
          r
          2
          11-r
          2
          10-r
          1
          1+r
          ,解不等式組可得
          8
          3
          ≤r≤
          11
          3

          ∴r=3
          T4=
          C
          3
          10
          (2x)7(-
          1
          x
          )
          3
          =-27
          C
          3
          10
          x4
          點(diǎn)評(píng):本題通過(guò)賦值法求出n,根據(jù)二項(xiàng)式系數(shù)的性質(zhì),同時(shí)利用展開(kāi)式的通項(xiàng)進(jìn)行求解,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知三角形的兩邊長(zhǎng)分別為4和5,其夾角的余弦是方程2x2+3x-2=0的根,則第三邊是
          21
          21

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:江蘇省鹽城中學(xué)2010-2011學(xué)年高二下學(xué)期期中考試數(shù)學(xué)文科試題 題型:044

          已知不等式2x2-3x+1≥0的解集為A,不等式的解集為B,C=A∩B.

          (Ⅰ)求集合C;

          (Ⅱ)若C{x|x2-2x+m≤0},求實(shí)數(shù)m的取值范圍;

          (Ⅲ)若存在x0∈C,使得不等式x2-3x+m≥0成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知(
          3x
          +2x2)2n
          的展開(kāi)式的二項(xiàng)式系數(shù)和比(3x-2)n的展開(kāi)式的系數(shù)和大1023.求(2x-
          1
          x
          )2n
          的展開(kāi)式中:
          (1)二項(xiàng)式系數(shù)最大的項(xiàng);(2)系數(shù)的絕對(duì)值最大的項(xiàng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知loga(2x2-3x+1)<loga(x2+2x-3)(0<a<1),求x的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案