在平面直角坐標系中,如圖,已知橢圓E:
的左、右頂點分別為
、
,上、下頂點分別為
、
.設直線
的傾斜角的正弦值為
,圓
與以線段
為直徑的圓關(guān)于直線
對稱.
(1)求橢圓E的離心率;
(2)判斷直線與圓
的位置關(guān)系,并說明理由;
(3)若圓的面積為
,求圓
的方程.
(1),(2)相切,(3)
.
解析試題分析:(1)求橢圓E的離心率,只需列出關(guān)于的一個等量關(guān)系就可解出. 因為直線
的傾斜角的正弦值為
,所以
,即
,(2)判斷直線
與圓
的位置關(guān)系,通常利用圓心到直線距離與半徑大小比較. 因為直線
的傾斜角的正弦值為
,所以直線
的斜率為
于是
的方程為:
,因此
中點
到直線
距離為
所以直線
與圓
相切,又圓
與以線段
為直徑的圓關(guān)于直線
對稱,直線
與圓
相切.(3)由圓
的面積為
知圓半徑為1,所以
設
關(guān)于直線
:
的對稱點為
,則
解得
.所以,圓
的方程為
.
【解】(1)設橢圓E的焦距為2c(c>0),
因為直線的傾斜角的正弦值為
,所以
,
于是,即
,所以橢圓E的離心率
(2)由可設
,
,則
,
于是的方程為:
,
故的中點
到
的距離
, 又以
為直徑的圓的半徑
,即有
,
所以直線與圓
相切.
(3)由圓的面積為
知圓半徑為1,從而
,
設的中點
關(guān)于直線
:
的對稱點為
,
則
解得.所以,圓
的方程為
.
考點:橢圓離心率,直線與圓位置關(guān)系,點關(guān)于直線對稱點
科目:高中數(shù)學 來源: 題型:解答題
已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點,且在y軸上截得的線段長為4,半徑小于5.
(1)求直線PQ與圓C的方程;
(2)若直線l∥PQ,且l與圓C交于點A,B,且以線段AB為直徑的圓經(jīng)過坐標原點,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知曲線C上的動點P()滿足到定點A(-1,0)的距離與到定點B(1,0)距離之比為
(1)求曲線C的方程。
(2)過點M(1,2)的直線與曲線C交于兩點M、N,若|MN|=4,求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是橢圓
上兩點,點M的坐標為
.
(1)當兩點關(guān)于
軸對稱,且
為等邊三角形時,求
的長;
(2)當兩點不關(guān)于
軸對稱時,證明:
不可能為等邊三角形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
以直角坐標系的原點為極點O,軸正半軸為極軸,已知點P的直角坐標為(1,-5),點C的極坐標為
,若直線l經(jīng)過點P,且傾斜角為
,圓C的半徑為4.
(1).求直線l的參數(shù)方程及圓C的極坐標方程;
(2).試判斷直線l與圓C有位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知圓C:x2+(y-3)2=4,一動直線l過A(-1,0)與圓C相交于P、Q兩點,
M是PQ中點,l與直線m:x+3y+6=0相交于N.
(1)求證:當l與m垂直時,l必過圓心C;
(2)當PQ=2時,求直線l的方程;
(3)探索·
是否與直線l的傾斜角有關(guān)?若無關(guān),請求出其值;若有關(guān),請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,已知圓x2+y2-12x+32=0的圓心為Q,過點P(0,2)且斜率為k的直線l與圓Q相交于不同的兩點A,B.
(1)求圓Q的面積;
(2)求k的取值范圍;
(3)是否存在常數(shù)k,使得向量+
與
共線?如果存在,求k的值;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com