【題目】已知函數(shù).
(1)若曲線在
處的切線與直線
垂直,求實(shí)數(shù)a的值;
(2)若函數(shù)在
上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)時(shí),若方程
有兩個(gè)相異實(shí)根
,
,
,求證
.
【答案】(1);(2)
;(3)證明見解析.
【解析】
(1)先利用導(dǎo)數(shù)的幾何意義求出切線斜率,進(jìn)而利用兩直線的垂直關(guān)系建立參數(shù)所滿足的方程進(jìn)行求解;
(2)將函數(shù)的單調(diào)性轉(zhuǎn)化為導(dǎo)函數(shù)的符號(hào)不變性進(jìn)而分離參數(shù),將不等式恒成立轉(zhuǎn)化為新函數(shù)的最值問題,再利用導(dǎo)數(shù)求解最值,從而求得實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),若方程
有兩個(gè)相異實(shí)根
,
,
,即
,令
,討論
的單調(diào)性,得
,令
,
,
設(shè),
,求
的單調(diào)性,得
,即
,結(jié)合
的單調(diào)性即可證得結(jié)論.
(1)依題意知的定義域?yàn)?/span>
,
求導(dǎo)得,
根據(jù)題意的斜率為
,
所以在
處的切線斜率為3,
即,
.
(2)令,
依題意有對(duì)
恒成立,即
恒成立,
,
單調(diào)遞減,
,
實(shí)數(shù)a的取值范圍為.
(3)當(dāng)時(shí),若方程
有兩個(gè)相異實(shí)根
,
,
,
即,
又令,
,
在
上遞減,
遞增,則
,
,且
,
又,故
,
,
,
,
,
設(shè),
,
,
在
遞增,
,
,又
在
上遞減,
,即
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,要利用一半徑為的圓形紙片制作三棱錐形包裝盒.已知該紙片的圓心為
,先以
為中心作邊長(zhǎng)為
(單位:
)的等邊三角形
,再分別在圓
上取三個(gè)點(diǎn)
,
,
,使
,
,
分別是以
,
,
為底邊的等腰三角形.沿虛線剪開后,分別以
,
,
為折痕折起
,
,
,使得
,
,
重合于點(diǎn)
,即可得到正三棱錐
.
(1)若三棱錐是正四面體,求
的值;
(2)求三棱錐的體積
的最大值,并指出相應(yīng)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知離心率為的橢圓
的左頂點(diǎn)為
,左焦點(diǎn)為
,及點(diǎn)
,且
、
、
成等比數(shù)列.
(1)求橢圓的方程;
(2)斜率不為的動(dòng)直線
過點(diǎn)
且與橢圓
相交于
、
兩點(diǎn),記
,線段
上的點(diǎn)
滿足
,試求
(
為坐標(biāo)原點(diǎn))面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓
,如圖,
分別交
軸正半軸于點(diǎn)
.射線
分別交
于點(diǎn)
,動(dòng)點(diǎn)
滿足直線
與
軸垂直,直線
與
軸垂直.
(1)求動(dòng)點(diǎn)的軌跡
的方程;
(2)過點(diǎn)作直線
交曲線
與點(diǎn)
,射線
與點(diǎn)
,且交曲線
于點(diǎn)
.問:
的值是否是定值?如果是定值,請(qǐng)求出該定值;如果不是定值,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,其中
.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)任意,任意
,不等式
恒成立時(shí)最大的
記為
,當(dāng)
時(shí),
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的多面體中,平面平面
,四邊形
為邊長(zhǎng)為2的菱形,
為直角梯形,四邊形
為平行四邊形,且
,
,
.
(1)若,
分別為
,
的中點(diǎn),求證:
平面
;
(2)若,
與平面
所成角的正弦值為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的極坐標(biāo)方程和
的直角坐標(biāo)方程;
(2)直線與曲線
,
分別交于第一象限內(nèi)
,
兩點(diǎn),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查,若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析.
(1)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;
(2)求抽取的6所學(xué)校中的2所學(xué)校均為小學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率為
,
的面積為2.
(I)求橢圓C的方程;
(II)設(shè)M是橢圓C上一點(diǎn),且不與頂點(diǎn)重合,若直線與直線
交于點(diǎn)P,直線
與直線
交于點(diǎn)Q.求證:△BPQ為等腰三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com