日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列中,,,且數(shù)列是公差為-1的等差數(shù)列,其中.?dāng)?shù)列是公比為的等比數(shù)列,其中.求數(shù)列的通項公式及它的前n項和

          答案:略
          解析:

          ,,

          是公差為-1的等差數(shù)列,是公比為的等比數(shù)列,

          消去得,為數(shù)列的通項公式.


          提示:

          是關(guān)于n的未知函數(shù).由已知條件,事先無法估計解析式的形式結(jié)構(gòu),因此不可能用待定系數(shù)法求.但是利用數(shù)列是等差數(shù)列和是等比數(shù)列,則可列出關(guān)于的兩個等式.視它們?yōu)殛P(guān)于、的方程組,消去即可求得


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an},{bn},且滿足an+1-an=bn(n=1,2,3,…).
          (1)若a1=0,bn=2n,求數(shù)列{an}的通項公式;
          (2)若bn+1+bn-1=bn(n≥2),且b1=1,b2=2.記cn=a6n-1(n≥1),求證:數(shù)列{cn}為常數(shù)列;
          (3)若bn+1bn-1=bn(n≥2),且b1=1,b2=2.若數(shù)列{
          ann
          }中必有某數(shù)重復(fù)出現(xiàn)無數(shù)次,求首項a1應(yīng)滿足的條件.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          定義:若數(shù)列滿足,則稱數(shù)列為“平方遞推數(shù)列”。已知數(shù)列中,,點在函數(shù)的圖像上,其中為正整數(shù)。

            (1)證明:數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列。

            (2)設(shè)(1)中“平方遞推數(shù)列”的前項之積為,即,求數(shù)列的通項及關(guān)于的表達式。

          (3)記,求數(shù)列的前項之和,并求使的最小值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省淄博市高三3月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

          若數(shù)列滿足,則稱數(shù)列平方遞推數(shù)列.已知數(shù)列,,點在函數(shù)的圖象上,其中為正整數(shù).

          1)證明數(shù)列平方遞推數(shù)列,且數(shù)列為等比數(shù)列;

          2設(shè)(1)中平方遞推數(shù)列的前項積為,

          ,求;

          3)在(2)的條件下,記,求數(shù)列的前項和,并求使的最小值

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省揚州市寶應(yīng)縣高三下學(xué)期期初測試數(shù)學(xué)試卷 題型:解答題

          (本題滿分16分)已知數(shù)列中,, 為實常數(shù)),前項和恒為正值,且當(dāng)時,.

          ⑴ 求證:數(shù)列是等比數(shù)列;

          ⑵ 設(shè)的等差中項為,比較的大。

          ⑶ 設(shè)是給定的正整數(shù),.現(xiàn)按如下方法構(gòu)造項數(shù)為有窮數(shù)列

          當(dāng)時,

          當(dāng)時,.

          求數(shù)列的前項和.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{}中, ,前項和為,且.

          (1)求;

          (2)求證:數(shù)列為等差數(shù)列,并寫出其通項公式;

          (3)設(shè),試問是否存在正整數(shù)其中(),使成等比數(shù)列?若存在,求出所有滿足條件的數(shù)組;若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案