日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知?jiǎng)訄AP:(x﹣a)2+(y﹣b)2=r2(r>0)被y軸所截的弦長(zhǎng)為2,被x軸分成兩段弧,且弧長(zhǎng)之比等于 (其中P(a,b)為圓心,O為坐標(biāo)原點(diǎn)).
          (1)求a,b所滿足的關(guān)系式;
          (2)點(diǎn)P在直線x﹣2y=0上的投影為A,求事件“在圓P內(nèi)隨機(jī)地投入一點(diǎn),使這一點(diǎn)恰好在△POA內(nèi)”的概率的最大值.

          【答案】
          (1)解:如圖所示,設(shè)圓P被y軸所截的弦為EF,與x軸相較于C,D兩點(diǎn),

          過(guò)點(diǎn)P作PM⊥EF,垂足為M,連接PE,由垂徑定理可得|EM|=1,在Rt△EMP中,r2=1+a2.①

          ∵被x軸分成兩段弧,且弧長(zhǎng)之比等于 ,設(shè) 為劣弧,∴∠CPD=90°,

          過(guò)點(diǎn)P作PN⊥x軸,垂足無(wú)N,連接PD,PC,則Rt△PND為等腰直角三角形,∴r2=2b2.②

          聯(lián)立①②消去r可得:2b2=1+a2,即為a,b所滿足的關(guān)系式.


          (2)解:點(diǎn)P到直線x﹣2y=0的距離|PA|= =d,

          ∵PA⊥OA,∴|OA|= =

          ∴SOAP= = ,

          ∴事件“在圓P內(nèi)隨機(jī)地投入一點(diǎn),使這一點(diǎn)恰好在△POA內(nèi)”的概率P= =

          = ,當(dāng)且僅當(dāng)d2=r2﹣d2,即 ,解得

          ∴P的最大值為


          【解析】(1)利用垂徑定理,勾股定理、等腰直角三角形的性質(zhì)即可得出;(2)利用點(diǎn)到直線的距離公式、兩點(diǎn)間的距離公式先計(jì)算出三角形的面積,利用幾何概率的計(jì)算公式得出概率,進(jìn)而利用導(dǎo)數(shù)求得其最大值.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解幾何概型的相關(guān)知識(shí),掌握幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)= sin2x﹣cos2x,有下列四個(gè)結(jié)論:①f(x)的最小正周期為π;②f(x)在區(qū)間[﹣ , ]上是增函數(shù);③f(x)的圖象關(guān)于點(diǎn)( ,0)對(duì)稱;④x= 是f(x)的一條對(duì)稱軸.其中正確結(jié)論的個(gè)數(shù)為(
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)F(x)=lnx(x>1)的圖象與函數(shù)G(x)的圖象關(guān)于直線y=x對(duì)稱,若函數(shù)f(x)=(k﹣1)x﹣G(﹣x)無(wú)零點(diǎn),則實(shí)數(shù)k的取值范圍是(
          A.(1﹣e,1)
          B.(1﹣e,∞)
          C.(1﹣e,1]
          D.(﹣∞,1﹣e)∪[1,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】近幾年,電商行業(yè)的蓬勃發(fā)展也帶動(dòng)了快遞業(yè)的高速發(fā)展.某快遞配送站每天至少要完成1800件包裹的配送任務(wù),該配送站有8名新手快遞員和4名老快遞員,但每天最多安排10人進(jìn)行配送.已知每個(gè)新手快遞員每天可配送240件包裹,日工資320元;每個(gè)老快遞員每天可配送300件包裹,日工資520元.

          (Ⅰ)求該配送站每天需支付快遞員的總工資最小值;

          (Ⅱ)該配送站規(guī)定:新手快遞員某個(gè)月被評(píng)為“優(yōu)秀”,則其下個(gè)月的日工資比這個(gè)月提高12%.那么新手快遞員至少連續(xù)幾個(gè)月被評(píng)為“優(yōu)秀”,日工資會(huì)超過(guò)老快遞員?

          (參考數(shù)據(jù): , .)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】以下四個(gè)關(guān)于圓錐曲線的命題中:
          ①雙曲線 與橢圓 有相同的焦點(diǎn);
          ②以拋物線的焦點(diǎn)弦(過(guò)焦點(diǎn)的直線截拋物線所得的線段)為直徑的圓與拋物線的準(zhǔn)線是相切的;
          ③設(shè)A,B為兩個(gè)定點(diǎn),k為常數(shù),若|PA|﹣|PB|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;
          ④過(guò)定圓C上一點(diǎn)A作圓的動(dòng)弦AB,O為原點(diǎn),若 則動(dòng)點(diǎn)P的軌跡為橢圓.其中正確的個(gè)數(shù)是(
          A.1個(gè)
          B.2個(gè)
          C.3個(gè)
          D.4個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校高三年級(jí)在高校自主招生期間,把學(xué)生的平時(shí)成績(jī)按“百分制”折算并排序,選出前300名學(xué)生,并對(duì)這300名學(xué)生按成績(jī)分組,第一組[75,80),第二組[80,85),第三組[85,90),第四組[90,95),第五組[95,100],如圖為頻率分布直方圖的一部分,其中第五組、第一組、第四組、第二組、第三組的人數(shù)依次成等差數(shù)列. (Ⅰ)請(qǐng)?jiān)趫D中補(bǔ)全頻率分布直方圖;
          (Ⅱ)若B大學(xué)決定在成績(jī)高的第4,5組中用
          分層抽樣的方法抽取6名學(xué)生,并且分成2組,每組3人
          進(jìn)行面試,求95分(包括95分)以上的同學(xué)被分在同一個(gè)小組的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直線l1:2x+y+2=0,l2:mx+4y+n=0
          (1)若l1⊥l2 , 求m的值,;
          (2)若l1∥l2 , 且它們的距離為 ,求m、n的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓E: 的左、右焦點(diǎn)分別為F1、F2 , 離心率 ,P為橢圓E上的任意一點(diǎn)(不含長(zhǎng)軸端點(diǎn)),且△PF1F2面積的最大值為1.
          (1)求橢圓E的方程;
          (2)已知直x﹣y+m=0與橢圓E交于不同的兩點(diǎn)A,B,且線AB的中點(diǎn)不在圓 內(nèi),求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】關(guān)于x的不等式ax2﹣|x+1|+3a≥0的解集為(﹣∞,+∞),則實(shí)數(shù)a的取值范圍是

          查看答案和解析>>

          同步練習(xí)冊(cè)答案