日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,ABC中,,ABED是邊長為1的正方形,平面ABED⊥底面ABC,若G,F(xiàn)分別是EC,BD的中點(diǎn).

          (1)求證:GF∥底面ABC;

          (2)求證:AC⊥平面EBC;

          (3)求幾何體ADEBC的體積V.

          【答案】(1) 見解析;(2)見解析 ;(3).

          【解析】

          (1)連接,根據(jù)是正方形,推出的中點(diǎn),結(jié)合的中點(diǎn),即可證明∥底面;(2)易證,根據(jù)平面平面,推出平面,從而可得,根據(jù)勾股定理可知,即可證明平面;(3)的中點(diǎn),連接,根據(jù),推出,,根據(jù)平面平面,推出平面,即可求得幾何體的體積.

          (1)證明:連接AE,如下圖所示.

          ∵ADEB為正方形,

          ∴AE∩BD=F,且F是AE的中點(diǎn),

          又G是EC的中點(diǎn),

          ∴GF∥AC,又AC平面ABC,GF平面ABC,

          ∴GF∥平面ABC.

          (2)證明:∵ADEB為正方形,∴EB⊥AB,

          又∵平面ABED⊥平面ABC,平面ABED∩平面ABC=AB,EB平面ABED,

          ∴BE⊥平面ABC,∴BE⊥AC.

          又∵AC=BC=AB,

          ∴CA2+CB2=AB2,

          ∴AC⊥BC.

          又∵BC∩BE=B,∴AC⊥平面BCE.

          (3)取AB的中點(diǎn)H,連GH,∵BC=AC=AB=,

          ∴CH⊥AB,且CH=,又平面ABED⊥平面ABC

          ∴CH⊥平面ABC,∴V=×1×.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)的導(dǎo)函數(shù)yf '(x)的圖象如圖所示, 其中-3,2,4是f '(x)=0的根, 現(xiàn)給出下列命題:

          (1) f(4)是f(x)的極小值;

          (2) f(2)是f(x)極大值;

          (3) f(-2)是f(x)極大值;

          (4) f(3)是f(x)極小值;

          (5) f(-3)是f(x)極大值.

          其中正確的命題是 ________________.(填上正確命題的序號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C: =1(a>b>0)的右焦點(diǎn)為F,過點(diǎn)F的直線交y軸于點(diǎn)N,交橢圓C于點(diǎn)A、P(P在第一象限),過點(diǎn)P作y軸的垂線交橢圓C于另外一點(diǎn)Q.若

          (1)設(shè)直線PF、QF的斜率分別為k、k',求證: 為定值;
          (2)若 且△APQ的面積為 ,求橢圓C的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)正數(shù)x,y滿足log x+log3y=m(m∈[﹣1,1]),若不等式3ax2﹣18xy+(2a+3)y2≥(x﹣y)2有解,則實(shí)數(shù)a的取值范圍是(
          A.(1, ]
          B.(1, ]
          C.[ ,+∞)
          D.[ ,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ex+bex﹣2asinx(a,b∈R).
          (1)當(dāng)a=0時(shí),討論函數(shù)f(x)的單調(diào)區(qū)間;
          (2)當(dāng)b=﹣1時(shí),若f(x)>0對(duì)任意x∈(0,π)恒成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示的圓錐的體積為,圓的直徑,點(diǎn)C的中點(diǎn),點(diǎn)D是母線PA的中點(diǎn).

          (1)求該圓錐的側(cè)面積;

          (2)求異面直線PBCD所成角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一臺(tái)機(jī)器由于使用時(shí)間較長,生產(chǎn)的零件有一些缺損.按不同轉(zhuǎn)速生產(chǎn)出來的零件有缺損的統(tǒng)計(jì)數(shù)據(jù)如下表所示:

          轉(zhuǎn)速x(轉(zhuǎn)/秒)

          16

          4

          12

          8

          每小時(shí)生產(chǎn)有缺損零件數(shù)y(個(gè))

          11

          9

          8

          5

          (1)作出散點(diǎn)圖;

          (2)如果yx線性相關(guān),求出回歸直線方程;

          (3)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺損的零件最多為10個(gè),那么,機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列函數(shù)中,既是偶函數(shù),又在(﹣∞,0)內(nèi)單調(diào)遞增的為(
          A.y=x4+2x
          B.y=2|x|
          C.y=2x﹣2x
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上,離心率為的橢圓過點(diǎn).

          (1)求橢圓方程;

          (2)設(shè)不過原點(diǎn)O的直線,與該橢圓交于PQ兩點(diǎn),直線OP、OQ的斜率依次為,滿足,求的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案