【題目】某玩具廠擬定生產(chǎn)兩款新毛絨玩具樣品,一款為毛絨小豬,另一款為毛絨小狗.由設(shè)計(jì)圖知,生產(chǎn)這兩款毛絨玩具均需相同材質(zhì)的填充物、長(zhǎng)毛絨、天鵝絨,且每個(gè)毛絨小豬需填充物、長(zhǎng)毛絨
、天鵝絨
,每個(gè)毛絨小狗需填充物
、長(zhǎng)毛絨
、天鵝絨
.現(xiàn)有所需填充物
、長(zhǎng)毛絨
、天鵝絨
,若每個(gè)毛絨小豬與毛絨小狗的出廠價(jià)分別為64元、36元,則生這批毛絨玩具的最大銷售額為_______元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)由正四棱錐和正四棱柱
構(gòu)成的組合體,正四棱錐的側(cè)棱長(zhǎng)為6,
為正四棱錐高的4倍.當(dāng)該組合體的體積最大時(shí),點(diǎn)
到正四棱柱
外接球表面的最小距離是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(
為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
.
(1)求曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)點(diǎn)P是曲線C上的動(dòng)點(diǎn),求P到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,
為等邊三角形,邊長(zhǎng)為2,
為等腰直角三角形,
,
,
,平面
平面ABCD.
(1)證明:平面PAD;
(2)求平面PAD與平面PBC所成銳二面角的余弦值;
(3)棱PD上是否存在一點(diǎn)E,使得平面PBC?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,
,側(cè)面
為矩形,
.將
繞
翻折至
,使
在平面
內(nèi).
(1)求證:平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】瑞士數(shù)學(xué)家、物理學(xué)家歐拉發(fā)現(xiàn)任一凸多面體(即多面體內(nèi)任意兩點(diǎn)的連線都被完全包含在該多面體中,直觀上講是指沒(méi)有凹陷或孔洞的多面體)的頂點(diǎn)數(shù)V.棱數(shù)E及面數(shù)F滿足等式,這個(gè)等式稱為歐拉多面體公式,被認(rèn)為是數(shù)學(xué)領(lǐng)域最漂亮、簡(jiǎn)潔的公式之一,現(xiàn)實(shí)生活中存在很多奇妙的幾何體,現(xiàn)代足球的外觀即取自一種不完全正多面體,它是由m塊黑色正五邊形面料和
塊白色正六邊形面料構(gòu)成的.則
( )
A.20B.18C.14D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱柱中,四邊形ABCD為平行四邊形,
且點(diǎn)
在底面上的投影H恰為CD的中點(diǎn).
(1)棱BC上存在一點(diǎn)N,使得AD⊥平面,試確定點(diǎn)N的位置,說(shuō)明理由;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某居民區(qū)內(nèi)有一直角梯形區(qū)域,
,
,
百米,
百米.該區(qū)域內(nèi)原有道路
,現(xiàn)新修一條直道
(寬度忽略不計(jì)),點(diǎn)
在道路
上(異于
,
兩點(diǎn)),
,
.
(1)用表示直道
的長(zhǎng)度;
(2)計(jì)劃在區(qū)域內(nèi)修建健身廣場(chǎng),在
區(qū)域內(nèi)種植花草.已知修建健身廣場(chǎng)的成本為每平方百米4萬(wàn)元,種植花草的成本為每平方百米2萬(wàn)元,新建道路
的成本為每百米4萬(wàn)元,求以上三項(xiàng)費(fèi)用總和的最小值(單位:萬(wàn)元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:,過(guò)點(diǎn)
且互相垂直的兩條動(dòng)直線
,
與拋物線C分別交于P,Q和M,N.
(1)求四邊形面積的取值范圍;
(2)記線段和
的中點(diǎn)分別為E,F,求證:直線
恒過(guò)定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com