【題目】1642年,帕斯卡發(fā)明了一種可以進(jìn)行十進(jìn)制加減法的機(jī)械計(jì)算機(jī)年,萊布尼茨改進(jìn)了帕斯卡的計(jì)算機(jī),但萊布尼茲認(rèn)為十進(jìn)制的運(yùn)算在計(jì)算機(jī)上實(shí)現(xiàn)起來(lái)過(guò)于復(fù)雜,隨即提出了“二進(jìn)制”數(shù)的概念
之后,人們對(duì)進(jìn)位制的效率問(wèn)題進(jìn)行了深入的研究
研究方法如下:對(duì)于正整數(shù)
,
,我們準(zhǔn)備
張不同的卡片,其中寫(xiě)有數(shù)字0,1,…,
的卡片各有
張
如果用這些卡片表示
位
進(jìn)制數(shù),通過(guò)不同的卡片組合,這些卡片可以表示
個(gè)不同的整數(shù)
例如
,
時(shí),我們可以表示出
共
個(gè)不同的整數(shù)
假設(shè)卡片的總數(shù)
為一個(gè)定值,那么
進(jìn)制的效率最高則意味著
張卡片所表示的不同整數(shù)的個(gè)數(shù)
最大
根據(jù)上述研究方法,幾進(jìn)制的效率最高?
A. 二進(jìn)制 B. 三進(jìn)制 C. 十進(jìn)制 D. 十六進(jìn)制
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB⊥AC,若AD⊥BC,則AB2=BD·BC;類似地有命題:在三棱錐A-BCD中,AD⊥平面ABC,若A點(diǎn)在平面BCD內(nèi)的射影為M,則有S=S△BCM·S△BCD.上述命題是 ( )
A. 真命題
B. 增加條件“AB⊥AC”才是真命題
C. 增加條件“M為△BCD的垂心”才是真命題
D. 增加條件“三棱錐A-BCD是正三棱錐”才是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,p:
,q:
.
已知p是q成立的必要不充分條件,求實(shí)數(shù)m的取值范圍;
若
是
成立的充分不必要條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市在進(jìn)行創(chuàng)建文明城市的活動(dòng)中,為了解居民對(duì)“創(chuàng)文”的滿意程度,組織居民給活動(dòng)打分(分?jǐn)?shù)為整數(shù).滿分為100分).從中隨機(jī)抽取一個(gè)容量為120的樣本.發(fā)現(xiàn)所有數(shù)據(jù)均在內(nèi).現(xiàn)將這些分?jǐn)?shù)分成以下6組并畫(huà)出了樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形,回答下列問(wèn)題:
(1)算出第三組的頻數(shù).并補(bǔ)全頻率分布直方圖;
(2)請(qǐng)根據(jù)頻率分布直方圖,估計(jì)樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(
為參數(shù)),曲線
,將
的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)縮短為原來(lái)的
得到曲線
.
(1)求曲線的普通方程,曲線
的直角坐標(biāo)方程;
(2)若點(diǎn)為曲線
上的任意一點(diǎn),
為曲線
上的任意一點(diǎn),求線段
的最小值,并求此時(shí)的
的坐標(biāo);
(3)過(guò)(2)中求出的點(diǎn)做一直線
,交曲線
于
兩點(diǎn),求
面積的最大值(
為直角坐標(biāo)系的坐標(biāo)原點(diǎn)),并求出此時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前
項(xiàng)和為
,且
,數(shù)列
滿足
,且
.
(1)求數(shù)列,
的通項(xiàng)公式;
(2)若,數(shù)列
的前
項(xiàng)和為
,若不等式
對(duì)一切
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)滿足如下條件:
①函數(shù)的最小值為
,最大值為9;
②且
;
③若函數(shù)在區(qū)間
上是單調(diào)函數(shù),則
的最大值為2.
試探究并解決如下問(wèn)題:
(Ⅰ)求,并求
的值;
(Ⅱ)求函數(shù)的圖象的對(duì)稱軸方程;
(Ⅲ)設(shè)是函數(shù)
的零點(diǎn),求
的值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù)
.
(1)當(dāng)時(shí),求函數(shù)
在
上的最值;
(2)若函數(shù)在
上單調(diào)遞增,求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com