日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知,p,q

          已知pq成立的必要不充分條件,求實(shí)數(shù)m的取值范圍;

          成立的充分不必要條件,求實(shí)數(shù)m的取值范圍.

          【答案】(1);(2)

          【解析】

          1)解一元二次不等式求得條件中不等式的解集.根據(jù)的必要不充分條件可知,的范圍是中不等式解集的真子集,由此列不等式組,解不等式組求得的取值范圍.2)根據(jù)的充分不必要條件可知的充分不必要條件,即中不等式的解集是范圍的真子集,由此列不等式組,解不等式組求得的取值范圍.

          ,即p

          q成立的必要不充分條件,則的真子集,

          ,解得,

          又當(dāng)時(shí),,不合題意,

          的取值范圍是.

          的充分不必要條件,q的充分不必要條件,

          的真子集,則,

          解得,又當(dāng)時(shí),,不合題意.

          的取值范圍為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列命題中,m,n表示兩條不同的直線,、表示三個(gè)不同的平面.正確的命題是(

          ,,則,,則

          ,,則;,,則

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓過(guò)點(diǎn),且圓心在直線上,過(guò)點(diǎn)作直線與圓交于兩點(diǎn),.

          1)求圓的方程;

          2)當(dāng)時(shí),若于圓交于,,求直線的方程;

          3)若點(diǎn)恰好是線段的中點(diǎn),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】2018年為我國(guó)改革開(kāi)放40周年,某事業(yè)單位共有職工600人,其年齡與人數(shù)分布表如下:

          年齡段

          人數(shù)(單位:人)

          180

          180

          160

          80

          約定:此單位45歲~59歲為中年人,其余為青年人,現(xiàn)按照分層抽樣抽取30人作為全市慶祝晚會(huì)的觀眾.

          (1)抽出的青年觀眾與中年觀眾分別為多少人?

          (2)若所抽取出的青年觀眾與中年觀眾中分別有12人和5人不熱衷關(guān)心民生大事,其余人熱衷關(guān)心民生大事.完成下列列聯(lián)表,并回答能否有的把握認(rèn)為年齡層與熱衷關(guān)心民生大事有關(guān)?

          熱衷關(guān)心民生大事

          不熱衷關(guān)心民生大事

          總計(jì)

          青年

          12

          中年

          5

          總計(jì)

          30

          (3)若從熱衷關(guān)心民生大事的青年觀眾(其中1人擅長(zhǎng)歌舞,3人擅長(zhǎng)樂(lè)器)中,隨機(jī)抽取2人上臺(tái)表演節(jié)目,則抽出的2人能勝任才藝表演的概率是多少?

          0.100

          0.050

          0.025

          0.010

          0.001

          2.706

          3.841

          5.024

          6.635

          10.828

          .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若曲線C上任意一點(diǎn)與直線上任意一點(diǎn)的距離都大于1,則稱曲線C遠(yuǎn)離”直線,在下列曲線中,“遠(yuǎn)離”直線:y=2x的曲線有___________(寫(xiě)出所有符合條件的曲線的編號(hào))

          ①曲線C:;②曲線C:;③曲線C:;

          ④曲線C:;⑤曲線C:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】ABCa=7,b=8,cosB= –

          A;

          AC邊上的高

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四邊形ABCD是梯形,AD∥BC,∠BAD=90°,四邊形CC1D1D為矩形,已知AB⊥BC1,AD=4,AB=2,BC=1.

          (I)求證:BC1∥平面ADD1;

          (II)若DD1=2,求平面AC1D1與平面ADD1所成的銳二面角的余弦值;

          (III)設(shè)P為線段C1D上的一個(gè)動(dòng)點(diǎn)(端點(diǎn)除外),判斷直線BC1與直線CP能否垂直?并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】1642年,帕斯卡發(fā)明了一種可以進(jìn)行十進(jìn)制加減法的機(jī)械計(jì)算機(jī)年,萊布尼茨改進(jìn)了帕斯卡的計(jì)算機(jī),但萊布尼茲認(rèn)為十進(jìn)制的運(yùn)算在計(jì)算機(jī)上實(shí)現(xiàn)起來(lái)過(guò)于復(fù)雜,隨即提出了“二進(jìn)制”數(shù)的概念之后,人們對(duì)進(jìn)位制的效率問(wèn)題進(jìn)行了深入的研究研究方法如下:對(duì)于正整數(shù),,我們準(zhǔn)備張不同的卡片,其中寫(xiě)有數(shù)字0,1,…,的卡片各有如果用這些卡片表示進(jìn)制數(shù),通過(guò)不同的卡片組合,這些卡片可以表示個(gè)不同的整數(shù)例如,時(shí),我們可以表示出個(gè)不同的整數(shù)假設(shè)卡片的總數(shù)為一個(gè)定值,那么進(jìn)制的效率最高則意味著張卡片所表示的不同整數(shù)的個(gè)數(shù)最大根據(jù)上述研究方法,幾進(jìn)制的效率最高?  

          A. 二進(jìn)制 B. 三進(jìn)制 C. 十進(jìn)制 D. 十六進(jìn)制

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱錐中, 底面,. 分別為的中點(diǎn). 為側(cè)棱上的動(dòng)點(diǎn).

          (Ⅰ)求證: 平面;

          (Ⅱ)求證:平面平面;

          (Ⅲ)試判斷直線與平面是否能夠垂直.若能垂直,求的值;若不能垂直,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案