日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某商店計劃每天購進(jìn)某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時每件調(diào)劑商品可獲利30元.

          若商店一天購進(jìn)該商品10件,求當(dāng)天的利潤y單位:元關(guān)于當(dāng)天需求量n單位:件,n∈N的函數(shù)解析式;

          商店記錄了50天該商品的日需求量單位:件,整理得下表:

          日需求量n

          8

          9

          10

          11

          12

          頻數(shù)

          10

          10

          15

          10

          5

          假設(shè)該店在這50天內(nèi)每天購進(jìn)10件該商品,求這50天的日利潤單位:元的平均數(shù);

          若該店一天購進(jìn)10件該商品,記“當(dāng)天的利潤在區(qū)間”為事件A,求PA的估計值.

          【答案】1 ;2 0.7

          【解析】

          試題分析:根據(jù)題意分段求解得出當(dāng)時,,當(dāng)時,,50天內(nèi)有9天獲得的利潤380元,有11天獲得的利潤為440元,有15天獲得利潤為500元,有10天獲得的利潤為530元,有5天獲得的利潤為560,求其平均數(shù)即可.當(dāng)天的利潤在區(qū)間[400,500]有11+15+10天,即可求解概率.

          試題解析: 解:當(dāng)日需求量時,利潤為;

          當(dāng)需求量時,利潤

          所以利潤與日需求量的函數(shù)關(guān)系式為:

          50天內(nèi)有10天獲得的利潤380元,有10天獲得的利潤為440元,有15天獲得利潤為500元,有10天獲得的利潤為530元,有5天獲得的利潤為560元

          .

          事件A發(fā)生當(dāng)且僅當(dāng)日需求量n為9或10或11時.由所給數(shù)據(jù)知,n=9或10或11的頻率為,

          故PA的估計值為0.7

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列的前n項和為Sn,點在直線上,數(shù)列為等差數(shù)列,且,前9項和為153.

          (1)求數(shù)列、的通項公式;

          (2)設(shè),數(shù)列的前n項和為,求使不等式對一切的都成立的最大整數(shù)k.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點P(2,0),且圓C:x2+y2﹣6x+4y+4=0.

          (Ⅰ)當(dāng)直線過點P且與圓心C的距離為1時,求直線的方程;

          (Ⅱ)設(shè)過點P的直線與圓C交于A、B兩點,若|AB|=4,求以線段AB為直徑的圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)f(x) (m0,n0)

          (1) 當(dāng)mn1,求證:f(x)不是奇函數(shù);

          (2) 設(shè)f(x)是奇函數(shù),mn的值;

          (3) (2)的條件下,求不等式f(f(x))f <0的解集.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C的兩個焦點分別為,且橢圓C過點P3,2

          求橢圓C的標(biāo)準(zhǔn)方程;

          與直線OP平行的直線交橢圓C于A,B兩點,求△PAB面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=(x.

          (Ⅰ)當(dāng)x∈[﹣1,1]時,求函數(shù)y=[f(x)]2﹣2af(x)+3的最小值g(a);

          (Ⅱ)在(Ⅰ)的條件下,是否存在實數(shù)m>n>3,使得g(x)的定義域為[n,m],值域為[n2,m2]?若存在,求出m、n的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為選拔參加“全市高中數(shù)學(xué)競賽”的選手,某中學(xué)舉行了一次“數(shù)學(xué)競賽”活動.為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計.按照的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).

          (1)求樣本容和頻率分布直方圖中的值并求出抽取學(xué)生的平均分;

          (2)在選取的樣本中,從競賽成績在分以上(含)的學(xué)生中隨機(jī)抽取名學(xué)生參加“全市中數(shù)學(xué)競賽”求所抽取的名學(xué)生中至少有一人得分在內(nèi)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,某城市有一塊半徑為40 m的半圓形綠化區(qū)域以O(shè) 為圓心,AB為直徑,現(xiàn)計劃對其進(jìn)行改建.在AB的延長線上取點D,OD=80 m,在半圓上選定一點C,改建后的綠化區(qū)域由扇形區(qū)域AOC和三角形區(qū)域COD組成,其面積為S m2.設(shè)∠AOCx rad.

          1寫出S關(guān)于x的函數(shù)關(guān)系式Sx,并指出x的取值范圍;

          2試問∠AOC多大時,改建后的綠化區(qū)域面積S取得最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】根據(jù)國家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)的年平均濃度不得超過微克/立方米,24小時平均濃度不得超過微克/立方米.某城市環(huán)保部門隨機(jī)抽取了一居民區(qū)去年20天24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:

          組別

          濃度

          (微克/立方米)

          頻數(shù)(天)

          頻率

          第一組

          3

          0.15

          第二組

          12

          0.6

          第三組

          3

          0.15

          第四組

          2

          0.1

          1從樣本中24小時平均濃度超過50微克/立方米的5天中,隨機(jī)抽取2天,求恰好有一天

          24小時平均濃度超過75微克/立方米的概率;

          2求樣本平均數(shù),并根據(jù)樣本估計總體的思想,從的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是

          否需要改進(jìn)說明理由

          查看答案和解析>>

          同步練習(xí)冊答案