【題目】現(xiàn)有一個(gè)以、
為半徑的扇形池塘,在
、
上分別取點(diǎn)
、
,作
、
分別交弧
于點(diǎn)
、
,且
,現(xiàn)用漁網(wǎng)沿著
、
、
、
將池塘分成如圖所示的養(yǎng)殖區(qū)域.已知
,
,
(
).
(1)若區(qū)域Ⅱ的總面積為,求
的值;
(2)若養(yǎng)殖區(qū)域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分別是30萬(wàn)元、40萬(wàn)元、20萬(wàn)元,試問(wèn):當(dāng)為多少時(shí),年總收入最大?
【答案】(1)(2)
【解析】試題分析:(1)本問(wèn)考查解三角函數(shù)的實(shí)際應(yīng)用,由及
可知
,根據(jù)條件易證
,所以
,由
可以求出
,所以區(qū)域Ⅱ的總面積為
,則
,可以求出
的值;(2)本問(wèn)考查函數(shù)的最值問(wèn)題,區(qū)域Ⅰ的面積可以根據(jù)扇形面積公式求得,區(qū)域Ⅱ的面積第(1)問(wèn)中已經(jīng)求出,區(qū)域Ⅲ的面積可以用1/4圓的面積減去區(qū)域Ⅰ、Ⅱ的面積,于是得到年收入函數(shù),利用導(dǎo)數(shù)求函數(shù)的最大值即可得出年收入的最大值.
試題解析:(1)因?yàn)?/span>,
,所以
.
因?yàn)?/span>,
,
,
所以,
.
又因?yàn)?/span>,所以
.
所以
,
又
所以
所以(
).
由得
,
,
.
(2)因?yàn)?/span>,所以
.
記年總收入為萬(wàn)元,
則
(
),
所以,令
,則
.
當(dāng)時(shí),
;當(dāng)
時(shí),
.
故當(dāng)時(shí),
有最大值,即年總收入最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知(
)的圖像關(guān)于坐標(biāo)原點(diǎn)對(duì)稱。
(1)求的值,并求出函數(shù)
的零點(diǎn);
(2)若函數(shù)在
內(nèi)存在零點(diǎn),求實(shí)數(shù)
的取值范圍;
(3)設(shè),若不等式
在
上恒成立,求滿足條件的最小整數(shù)
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),給出下列結(jié)論:
(1)若對(duì)任意,且
,都有
,則
為R上的減函數(shù);
(2)若為R上的偶函數(shù),且在
內(nèi)是減函數(shù),
(-2)=0,則
>0解集為(-2,2);
(3)若為R上的奇函數(shù),則
也是R上的奇函數(shù);
(4)t為常數(shù),若對(duì)任意的,都有
則
關(guān)于
對(duì)稱。
其中所有正確的結(jié)論序號(hào)為_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)方形ABCD中,AB=1,AD=,F(xiàn)將長(zhǎng)方形沿對(duì)角線BD折起,使AC=a,得到一個(gè)四面體ABCD,如圖所示.
(1)試問(wèn):在折疊的過(guò)程中,異面直線AB與CD,AD與BC能否垂直?若能垂直,求出相應(yīng)的a值;若不垂直,請(qǐng)說(shuō)明理由.
(2)當(dāng)四面體ABCD的體積最大時(shí),求二面角ACDB的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.且曲線
的左焦點(diǎn)
在直線
上.
(1)若直線與曲線
交于
兩點(diǎn),求
的值;
(2)求曲線的內(nèi)接矩形的周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ;
(1)若f(x)的定義域?yàn)?/span> (-∞,+∞), 求實(shí)數(shù)a的范圍;
(2)若f(x)的值域?yàn)?/span> [0, +∞), 求實(shí)數(shù)a的范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)曲線C1:-
=1(a>0,b>0)的左焦點(diǎn)F1作曲線C2:x2+y2=a2的切線,設(shè)切點(diǎn)為M,直線F1M交曲線C3:y2=2px(p>0)于點(diǎn)N,其中曲線C1與C3有一個(gè)共同的焦點(diǎn),若|MF1|=|MN|,則曲線C1的離心率為( )
A. B.
-1 C.
+1 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓+
=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,拋物線y2=
(a+c)x與橢圓交于B,C兩點(diǎn),若四邊形ABFC是菱形,則橢圓的離心率等于( )
A. B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com