日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在以ABCDEF為頂點(diǎn)的五面體中,底面ABCD為菱形,∠ABC120°,ABAEED2EFEFAB,點(diǎn)GCD中點(diǎn),平面EAD⊥平面ABCD.

          1)證明:BDEG;

          2)若三棱錐,求菱形ABCD的邊長(zhǎng).

          【答案】1)詳見(jiàn)解析;(2.

          【解析】

          1)取中點(diǎn),連,可得,結(jié)合平面EAD⊥平面ABCD,可證

          平面ABCD,進(jìn)而有,再由底面是菱形可得,可得,

          可證得平面,即可證明結(jié)論;

          2)設(shè)底面邊長(zhǎng)為,由EFAB,AB2EF,,求出體積,建立的方程,即可求出結(jié)論.

          1)取中點(diǎn),連,

          底面ABCD為菱形,,

          ,平面EAD⊥平面ABCD,

          平面平面平面,

          平面平面

          底面ABCD為菱形,,

          中點(diǎn),,

          平面,

          平面平面,;

          2)設(shè)菱形ABCD的邊長(zhǎng)為,則,

          ,

          ,

          ,所以菱形ABCD的邊長(zhǎng)為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了了解某校學(xué)生課外時(shí)間的分配情況,擬采用分層抽樣的方法從該校的高一、高二、高三這三個(gè)年級(jí)中共抽取5個(gè)班進(jìn)行調(diào)查,已知該校的高一、高二、高三這三個(gè)年級(jí)分別有186、6個(gè)班級(jí).

          (Ⅰ)求分別從高一、高二、高三這三個(gè)年級(jí)中抽取的班級(jí)個(gè)數(shù);

          (Ⅱ)若從抽取的5個(gè)班級(jí)中隨機(jī)抽取2個(gè)班級(jí)進(jìn)行調(diào)查結(jié)果的對(duì)比,求這2個(gè)班級(jí)中至少有1個(gè)班級(jí)來(lái)自高一年級(jí)的概率。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】我國(guó)南宋數(shù)學(xué)家楊輝1261年所著的《詳解九章算法》一書(shū)里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學(xué)史上的一個(gè)偉大成就.楊輝三角中,第行的所有數(shù)字之和為,若去除所有為1的項(xiàng),依次構(gòu)成數(shù)列,則此數(shù)列的前55項(xiàng)和為( )

          A. 4072B. 2026C. 4096D. 2048

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列命題中正確的是(

          A.直線(xiàn)與直線(xiàn)相互平行的充分不必條件

          B.直線(xiàn)垂直平面內(nèi)無(wú)數(shù)條直線(xiàn)直線(xiàn)垂直于平面的充分條件

          C.已知、、為非零向量,則的充要條件

          D.:存在,.:任意,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在如圖的程序框圖中,若輸入,,則輸出的值是( )

          [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/21/1907086498037760/1907898837975040/STEM/25d20caaa911497ea3baaf4f7dee45a3.png]

          A. 3 B. 7 C. 11 D. 33

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù).

          1)討論函數(shù)的單調(diào)性;

          2)若關(guān)于x的方程有唯一的實(shí)數(shù)解,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.

          1)求圓的普通方程和直線(xiàn)的直角坐標(biāo)方程;

          2)設(shè)是直線(xiàn)上任意一點(diǎn),過(guò)作圓切線(xiàn),切點(diǎn)為,,求四邊形(點(diǎn)為圓的圓心)面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)為常數(shù)).

          1)討論函數(shù)的單調(diào)性;

          2)若為整數(shù),函數(shù)恰好有兩個(gè)零點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知曲線(xiàn)的參數(shù)方程是為參數(shù)),曲線(xiàn)的參數(shù)方程是為參數(shù)).

          (Ⅰ)將曲線(xiàn)的參數(shù)方程化為普通方程;

          (Ⅱ)求曲線(xiàn)上的點(diǎn)到曲線(xiàn)的距離的最大值和最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案