日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 函數(shù)f(x)的定義域?yàn)锳,若存在非零實(shí)數(shù)t,使得對(duì)于任意x∈C(C⊆A)有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t度低調(diào)函數(shù).已知定義域?yàn)榈暮瘮?shù)f(x)=-|mx-3|,且f(x)為[0,+∞)上的6度低調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是( )
          A.[0,1]
          B.[1,+∞)
          C.(-∞,0]
          D.(-∞,0]∪[1,+∞)
          【答案】分析:根據(jù)低調(diào)函數(shù)定義,函數(shù)f(x)=-|mx-3|,且f(x)為[0,+∞)上的6度低調(diào)函數(shù)可轉(zhuǎn)化為-|m(x+6)-3|≤-|mx-3|在[0,+∞)上恒成立,從而可得結(jié)論.
          解答:解:根據(jù)題意,-|m(x+6)-3|≤-|mx-3|在[0,+∞)上恒成立
          ∴m(x+6)-3≥-mx+3或,m(x+6)-3≤mx-3在[0,+∞)上恒成立
          ∴m≥1或m≤0
          故選D.
          點(diǎn)評(píng):本題考查對(duì)題中新定義的正確理解,考查不等式恒成立問(wèn)題,正確轉(zhuǎn)化是關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足對(duì)于定義域內(nèi)任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
          (Ⅰ)求f(1)的值;
          (Ⅱ)判斷f(x)的奇偶性并證明;
          (Ⅲ)若f(2)=1,且f(x)在(0,+∞)上是增函數(shù),解關(guān)于x的不等式f(2x-1)-3≤0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若函數(shù)f(x)的定義域是[0,1),則F(x)=f[log 
          12
          (3-x)
          ]的定義域?yàn)?!--BA-->
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
          11-x
          ,記F(x)=2f(x)+g(x)
          (1)求函數(shù)F(x)的定義域D及其零點(diǎn);
          (2)試討論函數(shù)F(x)在定義域D上的單調(diào)性;
          (3)若關(guān)于x的方程F(x)-2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若函數(shù)f(x)的定義域?yàn)椋?1,1),它在定義域內(nèi)既是奇函數(shù)又是增函數(shù),且f(a-3)+f(4-2a)<0,則實(shí)數(shù)a的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若函數(shù)f(x)的定義域?yàn)閇-1,2],則函數(shù)
          f(x+2)
          x
          的定義域?yàn)椋ā 。?/div>
          A、[-1,0)∪(0,2]
          B、[-3,0)
          C、[1,4]
          D、(0,2]

          查看答案和解析>>