已知直線的參數(shù)方程為
為參數(shù)),以坐標(biāo)原點為極點,
軸的正半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)求圓的直角坐標(biāo)方程;
(2)若是直線
與圓面
≤
的公共點,求
的取值范圍.
(1);(2)
解析試題分析: (1)根據(jù)公式將極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程。(2)法一:設(shè)
,將圓
的一般方程化為標(biāo)準(zhǔn)方程即可得圓心
的坐標(biāo)和圓的半徑。將直線
化為普通方程。聯(lián)立方程組可得兩交點坐標(biāo)。根據(jù)題意可知點
即在這兩點連線的線段上。將兩交點坐標(biāo)代入
即可得其最值。
試題解析:(1)因為圓的極坐標(biāo)方程為
所以
又
所以
所以圓的普通方程
(2)『解法1』:
設(shè)
由圓的方程
所以圓的圓心是
,半徑是
將代入
得
又直線過
,圓
的半徑是
,所以
所以
即的取值范圍是
『解法2』:
直線的參數(shù)方程化成普通方程為:
6分
由,
解得,
8分
∵是直線
與圓面
的公共點,
∴點在線段
上,
∴的最大值是
,
最小值是
∴的取值范圍是
10分
考點:1極坐標(biāo)和直角坐標(biāo)方程的互化;2參數(shù)方程和普通方程間的互化;3線性規(guī)劃問題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
將圓上每一點的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設(shè)直線與C的交點為
,以坐標(biāo)原點為極點,x軸正半軸為極坐標(biāo)建立極坐標(biāo)系,求過線段
的中點且與
垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系中軸的正半軸重合,且兩坐標(biāo)系有相同的長度單位,圓C的參數(shù)方程為
(
為參數(shù)),點Q的極坐標(biāo)為
。
(1)化圓C的參數(shù)方程為極坐標(biāo)方程;
(2)若直線過點Q且與圓C交于M,N兩點,求當(dāng)弦MN的長度為最小時,直線
的直角坐標(biāo)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,曲線C1的參數(shù)方程為:(
為參數(shù)),以原點為極點,x軸的正半軸為極軸,并取與直角坐標(biāo)系相同的長度單位,建立極坐標(biāo)系,曲線C2是極坐標(biāo)方程為:
,
(1)求曲線C2的直角坐標(biāo)方程;
(2)若P,Q分別是曲線C1和C2上的任意一點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平面直角坐標(biāo)系,以
為極點,
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,,曲線
的參數(shù)方程為
.點
是曲線
上兩點,點
的極坐標(biāo)分別為
.
(1)寫出曲線的普通方程和極坐標(biāo)方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C的極坐標(biāo)方程是.以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是:
(
是參數(shù)).
(1)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線的參數(shù)方程化為普通方程;
(2)若直線l與曲線C相交于A、B兩點,且,試求實數(shù)m值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,以
為極點,
軸非負(fù)半軸為極軸建立坐標(biāo)系,已知曲線
的極坐標(biāo)方程為
,直線
的參數(shù)方程為:
(
為參數(shù)),兩曲線相交于
兩點.
(1)寫出曲線的直角坐標(biāo)方程和直線
的普通方程;
(2)若求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線
,過點
的直線
的參數(shù)方程為:
,(t為參數(shù)),直線
與曲線
分別交于
兩點.
(1)寫出曲線和直線
的普通方程;
(2)若成等比數(shù)列,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com