【題目】已知橢圓C:(
)的左、右焦點(diǎn)分別為
,
,離心率
,點(diǎn)
在橢圓C上,直線l過(guò)
交橢圓于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)時(shí),點(diǎn)A在x軸上方時(shí),求點(diǎn)A,B的坐標(biāo);
(3)若直線交y軸于點(diǎn)M,直線
交y軸于點(diǎn)N,是否存在直線l,使得
與
的面積滿足
,若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)
,
;(3)存在,
或
【解析】
(1)由和點(diǎn)
在橢圓上結(jié)合
可求出橢圓的方程.
(2)設(shè),
,則
,結(jié)合點(diǎn)A在橢圓上可求出A點(diǎn)坐標(biāo),然后可得直線AB的方程,再與橢圓聯(lián)立可求出B點(diǎn)坐標(biāo).
(3)設(shè),
,
,
,設(shè)直線l:
,
,
.由
建立關(guān)于
的方程從而求解.
解:(1)由題意可知,,
,又
,
聯(lián)立方程組可解得:,
,
所以橢圓C的方程為.
(2)設(shè),依題意,
,
,
,即
,
,
又A在橢圓上,滿足,即
,
,解得
,即
,
直線AB:,
聯(lián)立,解得
.
(3)設(shè),
,
,
,
直線l:(斜率不存在時(shí)不滿足題意),
則,
.
聯(lián)立,得
.
則,
.
由直線的方程:
,得M縱坐標(biāo)
.
由直線的方程:
,得N縱坐標(biāo)
,
由,得
.
所以,
,
,
代入根與系數(shù)的關(guān)系式,得,解得
.
存在直線或
滿足題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)絡(luò)平臺(tái)從購(gòu)買該平臺(tái)某課程的客戶中,隨機(jī)抽取了100位客戶的數(shù)據(jù),并將這100個(gè)數(shù)據(jù)按學(xué)時(shí)數(shù),客戶性別等進(jìn)行統(tǒng)計(jì),整理得到如表:
學(xué)時(shí)數(shù) |
| ||||||
男性 | 18 | 12 | 9 | 9 | 6 | 4 | 2 |
女性 | 2 | 4 | 8 | 2 | 7 | 13 | 4 |
(1)根據(jù)上表估計(jì)男性客戶購(gòu)買該課程學(xué)時(shí)數(shù)的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留小數(shù)點(diǎn)后兩位);
(2)從這100位客戶中,對(duì)購(gòu)買該課程學(xué)時(shí)數(shù)在20以下的女性客戶按照分層抽樣的方式隨機(jī)抽取7人,再?gòu)倪@7人中隨機(jī)抽取2人,求這2人購(gòu)買的學(xué)時(shí)數(shù)都不低于15的概率.
(3)將購(gòu)買該課程達(dá)到25學(xué)時(shí)及以上者視為“十分愛(ài)好該課程者”,25學(xué)時(shí)以下者視,為“非十分愛(ài)好該課程者”.請(qǐng)根據(jù)已知條件完成以下列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為“十分愛(ài)好該課程者”與性別有關(guān)?
非十分愛(ài)好該課程者 | 十分愛(ài)好該課程者 | 合計(jì) | |
男性 | |||
女性 | |||
合計(jì) | 100 |
附:,
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面
為直角梯形,
,且
,
,
,平面
底面
,
為
的中點(diǎn),
為等邊三角形,
是棱
上的一點(diǎn),設(shè)
(
與
不重合).
(1)若平面
,求
的值;
(2)當(dāng)時(shí),求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某幾何體被一平面所截后剩下幾何體的三視圖如圖所示,則該剩下幾何體的體積為( )
A. 10B. 15C. 20D. 25
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD和矩形ACEF所在的平面互相垂直,,M是線段EF的中點(diǎn),二面角
的大小為60°.
(1)求證:平面BDE;
(2)試在線段AC上找一點(diǎn)P,使得PF與CD所成的角是60°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的內(nèi)角
、
、
的對(duì)邊分別為
、
、
,
為
內(nèi)一點(diǎn),若分別滿足下列四個(gè)條件:
①;
②;
③;
④;
則點(diǎn)分別為
的( )
A.外心、內(nèi)心、垂心、重心B.內(nèi)心、外心、垂心、重心
C.垂心、內(nèi)心、重心、外心D.內(nèi)心、垂心、外心、重心
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方體中,
,點(diǎn)
為線段
上的動(dòng)點(diǎn),則下列結(jié)論正確的是( )
A.當(dāng)時(shí),
三點(diǎn)共線
B.當(dāng)時(shí),
C.當(dāng)時(shí),
平面
D.當(dāng)時(shí),
平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩鐵路線垂直相交于站,若已知
千米,甲火車從
站出發(fā),沿
方向以
千米
小時(shí)的速度行駛,同時(shí)乙火車從
站出發(fā),沿
方向,以
千米
小時(shí)的速度行駛,至
站即停止前行(甲車扔繼續(xù)行駛)(兩車的車長(zhǎng)忽略不計(jì)).
(1)求甲、乙兩車的最近距離(用含的式子表示);
(2)若甲、乙兩車開(kāi)始行駛到甲,乙兩車相距最近時(shí)所用時(shí)間為小時(shí),問(wèn)
為何值時(shí)
最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)
務(wù)極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
,
(1)求曲線,
的直角坐標(biāo)方程;
(2)曲線和
的交點(diǎn)為
,
,求以
為直徑的圓與
軸的交點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com