【題目】已知
.
(1)求的單調(diào)遞減區(qū)間;
(2)證明:當(dāng)時(shí),
恒成立.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)求出,分四種情況討論
的范圍,在定義域內(nèi),分別令
求得
的范圍,可得函數(shù)
增區(qū)間,
求得
的范圍,可得函數(shù)
的減區(qū)間;(2)令
,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性可得
時(shí),
,
時(shí),
,∴
時(shí),
,從而可得結(jié)論.
試題解析:(1)易得定義域?yàn)?/span>
,
,解
得
或
.
當(dāng)時(shí),∵
,∴
,
解得
,∴
的單調(diào)遞減區(qū)間為
;
當(dāng)時(shí),
i.若,即
時(shí),
時(shí),
,
時(shí),
,
時(shí),
,
∴的單調(diào)遞減區(qū)間為
;
ii.若,即
時(shí),
時(shí),
恒成立,
沒有單調(diào)遞減區(qū)間;
iii.若,即
時(shí),
時(shí),
;
時(shí),
,
時(shí),
,∴
的單調(diào)遞減區(qū)間為
.
綜上: 時(shí),單調(diào)遞減區(qū)間為
;
時(shí),單調(diào)遞減區(qū)間為
;
時(shí),無單調(diào)遞減區(qū)間;
時(shí),單調(diào)遞減區(qū)間為
.
(2)令
,
則
.
令,
,
時(shí),
,
時(shí),
,
∴時(shí),
,即
時(shí),
恒成立.
解得
或
,
時(shí),
,
時(shí),
,∴
時(shí),
,得證.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的兩個(gè)焦點(diǎn)分別為F1(-1,0)、F2(1,0),短軸的兩個(gè)端點(diǎn)分別為B1,B2
(1)若△F1B1B2為等邊三角形,求橢圓C的方程;
(2)若橢圓C的短軸長為2,過點(diǎn)F2的直線l與橢圓C相交于P,Q兩點(diǎn),且,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),函數(shù)
.
(Ⅰ)若函數(shù)在
處的切線與直線
平行,求
的值;
(Ⅱ)若對于定義域內(nèi)的任意,總存在
使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列的前
項(xiàng)和為
,且
.?dāng)?shù)列
滿足
,
為數(shù)列
的前
項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前
項(xiàng)和
;
(3)若對任意的,不等式
恒成立,求實(shí)數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】牡丹江一中2019年將實(shí)行新課程改革,即除語、數(shù)、外三科為必考科目外,還要在理、化、生、史、地、政六科中選擇三科作為選考科目.已知某生的高考志愿為北京大學(xué)環(huán)境科學(xué)專業(yè),按照17年北大高考招生選考科目要求物、化必選,為該生安排課表(上午四節(jié)、下午四節(jié),上午第四節(jié)和下午第一節(jié)不算相鄰),現(xiàn)該生某天最后兩節(jié)為自習(xí)課,且數(shù)學(xué)不排下午第一節(jié),語文、外語不相鄰,則該生該天課表有( 。┓N.
A. 444B. 1776C. 1440D. 1560
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人口老齡化的到來,我國的勞動力人口在不斷減少,“延遲退休”已經(jīng)成為人們越來越關(guān)注的話題,為了解公眾對“延遲退休”的態(tài)度,某校課外研究性學(xué)習(xí)小組在某社區(qū)隨機(jī)抽取了50人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理后制成下表:
年齡 | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
人數(shù) | 4 | 5 | 8 | 5 | 3 |
年齡 | [45,50) | [50,55) | [55,60) | [60,65) | [65,70) |
人數(shù) | 6 | 7 | 3 | 5 | 4 |
經(jīng)調(diào)查年齡在[25,30),[55,60)的被調(diào)查者中贊成“延遲退休”的人數(shù)分別是3人和2人.現(xiàn)從這兩組的被調(diào)查者中各隨機(jī)選取2人,進(jìn)行跟蹤調(diào)查.
(I)求年齡在[25,30)的被調(diào)查者中選取的2人都贊成“延遲退休”的概率;
(II)若選中的4人中,不贊成“延遲退休”的人數(shù)為,求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某早餐店對一款新口味的酸奶進(jìn)行了一段時(shí)間試銷,定價(jià)為5元/瓶.酸奶在試銷售期間足量供應(yīng),每天的銷售數(shù)據(jù)按照[15,25],(25,35],(35,45],(45,55]分組,得到如下頻率分布直方圖,以不同銷量的頻率估計(jì)概率.試銷結(jié)束后,這款酸奶正式上市,廠家只提供整箱批發(fā):大箱每箱50瓶,批發(fā)成本85元;小箱每箱30瓶,批發(fā)成本65元.由于酸奶保質(zhì)期短,當(dāng)天未賣出的只能作廢.該早餐店以試銷售期間的銷量作為參考,決定每天僅批發(fā)一箱(計(jì)算時(shí)每個(gè)分組取中間值作為代表,比如銷量為(45,55]時(shí)看作銷量為50瓶).
(1)設(shè)早餐店批發(fā)一大箱時(shí),當(dāng)天這款酸奶的利潤為隨機(jī)變量X,批發(fā)一小箱時(shí),當(dāng)天這款酸奶的利潤為隨機(jī)變量Y,求X和Y的分布列;
(2)從早餐店的收益角度和利用所學(xué)的知識作為決策依據(jù),該早餐店應(yīng)每天批發(fā)一大箱還是一小箱?(必須作出一種合理的選擇)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于,若數(shù)列
滿足
,則稱這個(gè)數(shù)列為“K數(shù)列”.
(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實(shí)數(shù)的取值范圍;
(Ⅱ)是否存在首項(xiàng)為-1的等差數(shù)列為“K數(shù)列”,且其前n項(xiàng)和
滿足
?若存在,求出
的通項(xiàng)公式;若不存在,請說明理由;
(Ⅲ)已知各項(xiàng)均為正整數(shù)的等比數(shù)列是“K數(shù)列”,數(shù)列
不是“K數(shù)列”,若
,試判斷數(shù)列
是否為“K數(shù)列”,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知點(diǎn)P在正方體ABCD-A′B′C′D′的對角線BD′上,∠PDA=60°.
(1)求DP與CC′所成角的大小.
(2)求DP與平面AA′D′D所成角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com