日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)設(shè)不等式x2-2ax+a+2≤0的解集為M,如果M⊆[1,4],求實(shí)數(shù)a的取值范圍?
          (2)解關(guān)于x的不等式>1(a≠1).
          【答案】分析:(1)該題實(shí)質(zhì)上是二次函數(shù)的區(qū)間根問(wèn)題,已知M⊆[1,4],首先分類討論①M(fèi)=∅,得出△<0,解出a的范圍;②M≠∅,此時(shí)△=0或△>0,分三種情況計(jì)算a的取值范圍,然后綜合①②的情況求出實(shí)數(shù)a的取值范圍;
          (2)先通分為:>0,因?yàn)榉匠蹋▁-2)(ax-x+2-a)=0的兩根x=2與x=,大小沒(méi)法比較,所以要分類討論,①a>1;②a<1,從而求出不等式的解.
          解答:解:(1)設(shè)f(x)=x2-2ax+a+2,有△=(-2a)2-4(a+2)=4(a2-a-2)
          ∵M(jìn)⊆[1,4]有兩種情況:
          ①M(fèi)=∅,此時(shí)△<0;
          當(dāng)△<0時(shí),-1<a<2,M=∅⊆[1,4];
          ②其二是M≠∅,此時(shí)△=0或△>0,分三種情況計(jì)算a的取值范圍
          當(dāng)△=0時(shí),a=-1或2;
          當(dāng)a=-1時(shí)M={-1}?[1,4];
          當(dāng)a=2時(shí),m={2}⊆[1,4].
          當(dāng)△>0時(shí),a<-1或a>2.
          設(shè)方程f(x)=0的兩根x1,x2,且x1<x2,
          那么M=[x1,x2],M⊆[1,4]
          ∴1≤x1<x2≤4,
          ∴f(1)≥0且f(4)≥0,1≤a≤4,且△>0,
          ,解得2<a≤
          綜上討論知,當(dāng)M⊆[1,4]時(shí),a的取值范圍是(-1,].

          (2)原不等式可化為:>0,
          ①當(dāng)a>1時(shí),原不等式與(x-)(x-2)>0同解.
          由于,
          ∴原不等式的解為(-∞,)∪(2,+∞).
          ②當(dāng)a<1時(shí),原不等式與(x-)(x-2)<0同解.
          由于,
          若a<0,,解集為(,2);
          若a=0時(shí),,解集為∅;
          若0<a<1,,解集為(2,,).
          綜上所述:當(dāng)a>1時(shí)解集為(-∞,)∪(2,+∞);
          當(dāng)0<a<1時(shí),解集為(2,);
          當(dāng)a=0時(shí),解集為∅;當(dāng)a<0時(shí),解集為(,2).
          點(diǎn)評(píng):此題主要考查一元二次不等式的解法,運(yùn)用了分類討論的思想,分類討論的問(wèn)題比較多,從而加大了試題的難度.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (1)設(shè)不等式x2-2ax+a+2≤0的解集為M,如果M⊆[1,4],求實(shí)數(shù)a的取值范圍?
          (2)解關(guān)于x的不等式
          a(x-1)x-2
          >1(a≠1).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          例2:(1)設(shè)不等式2(log
          1
          2
          x
          2+9log
          1
          2
          x
          +9≤0時(shí),求f(x)=log2(
          x
          2
          )•(log2
          x
          8
          )
          的最大值和最小值.
          (2)設(shè)f(x)=|lgx|,a、b是滿足f(a)=f(b)=2f(
          a+b
          2
          )
          的實(shí)數(shù),其中0<a<b
          ①求證:a<1<b;②求證:2<4b-b2<3.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)不等式x2-2ax+a+2≤0的解集為M,如果M⊆[1,4],則實(shí)數(shù)a的范圍是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (1)設(shè)不等式x2-2ax+a+2≤0的解集為M,如果M[1,4],求實(shí)數(shù)a的取值范圍?

          (2)解關(guān)于x的不等式>1(a≠1)。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案