【題目】已知函數(shù),
,其中
為自然對數(shù)的底數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性.
(Ⅱ)試判斷曲線與
是否存在公共點(diǎn)并且在公共點(diǎn)處有公切線.若存在,求出公切線
的方程;若不存在,請說明理由.
【答案】(Ⅰ)見解析(Ⅱ).
【解析】試題分析:
(1)對函數(shù)求導(dǎo)可得,求解不等式
和
可得
在
上單調(diào)遞減,在
上單調(diào)遞減,在
上單調(diào)遞增.
(2)假設(shè)曲線與
存在公共點(diǎn)且在公共點(diǎn)處有公切線,由題意可知
,據(jù)此有式即
.結(jié)合函數(shù)
,
的性質(zhì)可知方程
在
上有唯一實(shí)數(shù)根
,據(jù)此可得曲線
與
的公切線
的方程為
.
試題解析:
(Ⅰ),令
得
.
當(dāng)且
時(shí),
;當(dāng)
時(shí),
.
所以在
上單調(diào)遞減,在
上單調(diào)遞減,在
上單調(diào)遞增.
(Ⅱ)假設(shè)曲線與
存在公共點(diǎn)且在公共點(diǎn)處有公切線,且切點(diǎn)橫坐標(biāo)為
,則
,即
,其中(2)式即
.
記,
,則
,得
在
上單調(diào)遞減,在
上單調(diào)遞增,又
,
,
,故方程
在
上有唯一實(shí)數(shù)根
,經(jīng)驗(yàn)證也滿足(1)式.
于是, ,
,曲線
與
的公切線
的方程為
,即
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·太原三模)已知等比數(shù)列{an}的各項(xiàng)均為不等于1的正數(shù),數(shù)列{bn}滿足bn=lgan,b3=18,b6=12,則數(shù)列{bn}的前n項(xiàng)和的最大值為( )
A. 126 B. 130 C. 132 D. 134
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè).
①若函數(shù)在
處的切線過點(diǎn)
,求
的值;
②當(dāng)時(shí),若函數(shù)
在
上沒有零點(diǎn),求
的取值范圍.
(2)設(shè)函數(shù),且
,求證: 當(dāng)
時(shí),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個(gè)不同的極值點(diǎn)
,
,且
.
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè)上述的取值范圍為
,若存在
,使對任意
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018河南安陽市高三一模】如下圖,在平面直角坐標(biāo)系中,直線
與直線
之間的陰影部分即為
,區(qū)域
中動(dòng)點(diǎn)
到
的距離之積為1.
(Ⅰ)求點(diǎn)的軌跡
的方程;
(Ⅱ)動(dòng)直線穿過區(qū)域
,分別交直線
于
兩點(diǎn),若直線
與軌跡
有且只有一個(gè)公共點(diǎn),求證:
的面積恒為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m,n∈R+,f(x)=|x+m|+|2x-n|.
(1)當(dāng)m=n=1時(shí),求f(x)的最小值;
(2)若f(x)的最小值為2,求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)等比數(shù)列{an}(n∈N*),首項(xiàng)a1=3,前n項(xiàng)和為Sn,且S3+a3、S5+a5,S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{nan}的前n項(xiàng)和為Tn,若對任意正整數(shù)n,都有Tn∈[a,b],求b-a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某批次的某種燈泡中,隨機(jī)地抽取個(gè)樣品,并對其壽命進(jìn)行追蹤調(diào)查,將結(jié)果列成頻率分布表如下.根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個(gè)等級(jí),其中壽命大于或等于
天的燈泡是優(yōu)等品,壽命小于
天的燈泡是次品,其余的燈泡是正品.
壽命(天) | 頻數(shù) | 頻率 |
合計(jì) |
(Ⅰ)根據(jù)頻率分布表中的數(shù)據(jù),寫出,
的值.
(Ⅱ)某人從燈泡樣品中隨機(jī)地購買了個(gè),求
個(gè)燈泡中恰有一個(gè)是優(yōu)等品的概率.
(Ⅲ)某人從這個(gè)批次的燈泡中隨機(jī)地購買了個(gè)進(jìn)行使用,若以上述頻率作為概率,用
表示此人所購買的燈泡中次品的個(gè)數(shù),求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠ABC=60°,為正三角形,且側(cè)面PAB⊥底面ABCD,
為線段
的中點(diǎn),
在線段
上.
(I)當(dāng)是線段
的中點(diǎn)時(shí),求證:PB // 平面ACM;
(II)求證: ;
(III)是否存在點(diǎn),使二面角
的大小為60°,若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com