【題目】已知函數(shù)f(x)=cos(2x-
),x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[-,
]上的最小值和最大值,并求出取得最值時(shí)x的值.
【答案】(1)最小正周期π,f(x)的單調(diào)遞減區(qū)間是[kπ+,kπ+
],k∈Z;(2)f(x)max=
,f(x)min=-1.
【解析】試題分析:(1)首先分析題目中三角函數(shù)的表達(dá)式為標(biāo)準(zhǔn)型,則可以根據(jù)周期公式,遞增區(qū)間直接求解即可;
(2)然后可以根據(jù)三角函數(shù)的性質(zhì)解出函數(shù)的單調(diào)區(qū)間,再分別求出最大值最小值.
試題解析:
(1)f(x)的最小正周期T==
=π.
當(dāng)2kπ≤2x-≤2kπ+π,即kπ+
≤x≤kπ+
,k∈Z時(shí),f(x)單調(diào)遞減,
∴f(x)的單調(diào)遞減區(qū)間是[kπ+,kπ+
],k∈Z.
(2)∵x∈[-,
],則2x-
∈[-
,
],
故cos(2x-)∈[-
,1],
∴f(x)max=,此時(shí)2x-
=0,即x=
;
f(x)min=-1,此時(shí)2x-=
,即x=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1點(diǎn)E,F(xiàn),G分別是DD1 , AB,CC1的中點(diǎn),則異面直線(xiàn)A1E與GF所成的角是( )
A.90°
B.60°
C.45°
D.30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
.
(1)解關(guān)于的不等式
;
(2)若函數(shù)在區(qū)間
上的值域?yàn)?/span>
,求實(shí)數(shù)
的取值范圍;
(3)設(shè)函數(shù),求滿(mǎn)足
的
的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)h(x)=(m2﹣5m+1)xm+1為冪函數(shù),且為奇函數(shù).
(1)求m的值;
(2)求函數(shù)g(x)=h(x)+ 在x∈[0,
]的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙是邊長(zhǎng)為的兩塊正方形鋼板,現(xiàn)要將甲裁剪焊接成一個(gè)正四棱柱,將乙裁剪焊接成一個(gè)正四棱錐,使它們的全面積都等于一個(gè)正方形的面積(不計(jì)焊接縫的面積).
(1)將你的裁剪方法用虛線(xiàn)標(biāo)示在圖中,并作簡(jiǎn)要說(shuō)明;
(2)試比較你所制作的正四棱柱與正四棱錐體積的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶(hù)家庭,得到如下統(tǒng)計(jì)數(shù)據(jù)表:
收入x(萬(wàn)元) | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
支出y(萬(wàn)元) | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
根據(jù)上表可得回歸直線(xiàn)方程 ,其中
,
=
﹣
,據(jù)此估計(jì),該社區(qū)一戶(hù)居民年收入為15萬(wàn)元家庭的年支出為萬(wàn)元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀與探究
人教A版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū) 數(shù)學(xué)4(必修)》在第一章的小結(jié)中寫(xiě)到:
將角放在直角坐標(biāo)系中討論不但使角的表示有了統(tǒng)一的方法,而且使我們能夠借助直角坐標(biāo)系中的單位圓,建立角的變化與單位圓上點(diǎn)的變化之間的對(duì)應(yīng)關(guān)系,從而用單位圓上點(diǎn)的縱坐標(biāo)、橫坐標(biāo)來(lái)表示圓心角的正弦函數(shù)、余弦函數(shù).因此,正弦函數(shù)、余弦函數(shù)的基本性質(zhì)與圓的幾何性質(zhì)(主要是對(duì)稱(chēng)性)之間存在著非常緊密的聯(lián)系.例如,和單位圓相關(guān)的“勾股定理”與同角三角函數(shù)的基本關(guān)系有內(nèi)在的一致性;單位圓周長(zhǎng)為與正弦函數(shù)、余弦函數(shù)的周期為
是一致的;圓的各種對(duì)稱(chēng)性與三角函數(shù)的奇偶性、誘導(dǎo)公式等也是一致的等等.因此,三角函數(shù)的研究過(guò)程能夠很好地體現(xiàn)數(shù)形結(jié)合思想.
依據(jù)上述材料,利用正切線(xiàn)可以討論研究得出正切函數(shù)的性質(zhì).
比如:由圖1.2-7可知,角的終邊落在四個(gè)象限時(shí)均存在正切線(xiàn);角
的終邊落在
軸上時(shí),其正切線(xiàn)縮為一個(gè)點(diǎn),值為
;角
的終邊落在
軸上時(shí),其正切線(xiàn)不存在;所以正切函數(shù)
的定義域是
.
(1)請(qǐng)利用單位圓中的正切線(xiàn)研究得出正切函數(shù)的單調(diào)性和奇偶性;
(2)根據(jù)閱讀材料中途1.2-7,若角為銳角,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)(0,1)的直線(xiàn)與圓x2+y2=4相交于A、B兩點(diǎn),若 ,則點(diǎn)P的軌跡方程是( )
A.
B.x2+(y﹣1)2=1
C.
D.x2+(y﹣1)2=2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com