日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某種水果按照果徑大小可分為四類:標(biāo)準(zhǔn)果、優(yōu)質(zhì)果、精品果、禮品果.某采購商從采購的一批水果中隨機(jī)抽取個(gè),利用水果的等級分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下:

          等級

          標(biāo)準(zhǔn)果

          優(yōu)質(zhì)果

          精品果

          禮品果

          個(gè)數(shù)

          10

          30

          40

          20

          (1)若將頻率是為概率,從這個(gè)水果中有放回地隨機(jī)抽取個(gè),求恰好有個(gè)水果是禮品果的概率.(結(jié)果用分?jǐn)?shù)表示)

          (2)用樣本估計(jì)總體,果園老板提出兩種購銷方案給采購商參考.

          方案:不分類賣出,單價(jià)為.

          方案:分類賣出,分類后的水果售價(jià)如下:

          等級

          標(biāo)準(zhǔn)果

          優(yōu)質(zhì)果

          精品果

          禮品果

          售價(jià)(元/kg)

          16

          18

          22

          24

          從采購單的角度考慮,應(yīng)該采用哪種方案?

          (3)用分層抽樣的方法從這個(gè)水果中抽取個(gè),再從抽取的個(gè)水果中隨機(jī)抽取個(gè),表示抽取的是精品果的數(shù)量,求的分布列及數(shù)學(xué)期望.

          【答案】(1);(2)第一種方案;(3)詳見解析

          【解析】

          1)計(jì)算出從個(gè)水果中隨機(jī)抽取一個(gè),抽到禮品果的概率;則可利用二項(xiàng)分布的概率公式求得所求概率;(2)計(jì)算出方案單價(jià)的數(shù)學(xué)期望,與方案的單價(jià)比較,選擇單價(jià)較低的方案;(3)根據(jù)分層抽樣原則確定抽取的個(gè)水果中,精品果個(gè),非精品果個(gè);則服從超幾何分布,利用超幾何分布的概率計(jì)算公式可得到每個(gè)取值對應(yīng)的概率,從而可得分布列;再利用數(shù)學(xué)期望的計(jì)算公式求得結(jié)果.

          (1)設(shè)從個(gè)水果中隨機(jī)抽取一個(gè),抽到禮品果的事件為,則

          現(xiàn)有放回地隨機(jī)抽取個(gè),設(shè)抽到禮品果的個(gè)數(shù)為,則

          恰好抽到個(gè)禮品果的概率為:

          (2)設(shè)方案的單價(jià)為,則單價(jià)的期望值為:

          從采購商的角度考慮,應(yīng)該采用第一種方案

          (3)用分層抽樣的方法從個(gè)水果中抽取個(gè),則其中精品果個(gè),非精品果個(gè)

          現(xiàn)從中抽取個(gè),則精品果的數(shù)量服從超幾何分布,所有可能的取值為:

          ;;;

          的分布列如下:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2015年“雙十一”當(dāng)天,甲、乙兩大電商進(jìn)行了打折促銷活動,某公司分別調(diào)查了當(dāng)天在甲、乙電商購物的1000名消費(fèi)者的消費(fèi)金額,得到了消費(fèi)金額的頻數(shù)分布表如下:

          甲電商:

          消費(fèi)金額(單位:千元)

          [0,1

          [1,2

          [2,3

          [34

          [4,5]

          頻數(shù)

          50

          200

          350

          300

          100

          乙電商:

          消費(fèi)金額(單位:千元)

          [0,1

          [12

          [2,3

          [3,4

          [4,5]

          頻數(shù)

          250

          300

          150

          100

          200

          (Ⅰ)根據(jù)頻數(shù)分布表,完成下列頻率分布直方圖,并根據(jù)頻率分布直方圖比較消費(fèi)者在甲、乙電商消費(fèi)金額的中位數(shù)的大小以及方差的大。ㄆ渲蟹讲畲笮〗o出判斷即可,不必說明理由);

          (Ⅱ)(。└鶕(jù)上述數(shù)據(jù),估計(jì)“雙十一”當(dāng)天在甲電商購物的大量的消費(fèi)者中,消費(fèi)金額小于3千元的概率;

          (ⅱ)現(xiàn)從“雙十一”當(dāng)天在甲電商購物的大量的消費(fèi)者中任意調(diào)查5位,記消費(fèi)金額小于3千元的人數(shù)為X,試求出X的期望和方差.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率,且圓經(jīng)過橢圓C的上、下頂點(diǎn).

          1)求橢圓C的方程;

          2)若直線l與橢圓C相切,且與橢圓相交于M,N兩點(diǎn),證明:的面積為定值(O為坐標(biāo)原點(diǎn)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線與拋物線(常數(shù))相交于不同的兩點(diǎn),且為定值),線段的中點(diǎn)為,與直線平行的切線的切點(diǎn)為(不與拋物線對稱軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱為拋物線的切線,這個(gè)公共點(diǎn)為切點(diǎn)).

          1)用、表示出點(diǎn)、點(diǎn)的坐標(biāo),并證明垂直于軸;

          2)求的面積,證明的面積與、無關(guān),只與有關(guān);

          3)小張所在的興趣小組完成上面兩個(gè)小題后,小張連、,再作與、平行的切線,切點(diǎn)分別為、,小張馬上寫出了、的面積,由此小張求出了直線與拋物線圍成的面積,你認(rèn)為小張能做到嗎?請你說出理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某學(xué)校藝術(shù)專業(yè)300名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30)[30,40),,[80,90],并整理得到如下頻率分布直方圖:

          (1)從總體的300名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;

          (2)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[4050)內(nèi)的人數(shù);

          (3)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐中,底面是矩形, 平面 ,以的中點(diǎn)為球心, 為直徑的球面交于點(diǎn),交于點(diǎn).

          (1)求證:平面平面;

          (2)求點(diǎn)到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線y2=2px的焦點(diǎn)為F,準(zhǔn)線方程是x=﹣1

          I)求此拋物線的方程;

          )設(shè)點(diǎn)M在此拋物線上,且|MF|=3,若O為坐標(biāo)原點(diǎn),求△OFM的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給出下列命題

          1)若一條直線與兩條直線都相交,那么這三條直線共面;

          2)若三條直線兩兩平行,那么這三條直線共面;

          3)若直線與直線異面,直線與直線異面,那么直線與直線異面;

          4)若直線與直線垂直,直線與直線垂直,那么直線與直線平行;

          其中正確的命題個(gè)數(shù)有(

          A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,圓軸相切于點(diǎn),與軸正半軸交于兩點(diǎn),的上方),且.

          1)求圓的標(biāo)準(zhǔn)方程;

          2)過點(diǎn)作任一條直線與圓相交于,兩點(diǎn).

          ①求證:為定值,并求出這個(gè)定值;

          ②求的面積的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案