日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知ABC為等腰直角三角形, , , 分別是邊的中點,現(xiàn)將沿折起,使平面 分別是邊的中點,平面, 分別交于, 兩點.

          (1)求證: ;

          (2)求二面角的余弦值;

          (3)的長.

          【答案】(1)見解析,(2) ;(3)

          【解析】試題分析:(1)ED∥平面BCH,EDHI,又因為EDBC,所以IHBC;(2建立空間直角坐標系,n1(1,-1,1),n2(0,1,2),求出二面角;(3λ,·n20,解得λ,所以AGAF.

          試題解析:

          (1)證明:因為D,E分別是邊ACAB的中點,所以EDBC.

          因為BC平面BCH,ED平面BCH,所以ED∥平面BCH.

          因為ED平面BCH,ED平面AED,平面BCH平面AEDHI,所以EDHI.

          又因為EDBC,所以IHBC.

          (2)如圖,建立空間直角坐標系,由題意得,D(0,0,0)E(2,0,0),A(0,0,2),F(3,1,0),C(0,2,0)H(0,0,1),B(4,2,0),(2,0,2)(1,1,0),(0,-21),(1,0,0)

          設(shè)平面AGI的法向量為n1(x1y1,z1),

          z11,解得x11,y1=-1,則n1(1,-1,1)

          設(shè)平面CIG的法向量為n2(x2,y2,z2),

          z22,解得y21,則n2(0,1,2)

          所以cosn1,n2〉=,所以二面角AGIC的余弦值為.

          (3)(2)知,(3,1,-2)

          設(shè)λ(3λ,λ,-2λ)0<λ<1,

          (0,0,-1)(3λ,λ,-2λ)(3λ,-λ,2λ1),由·n20,解得λ,

          AGAF.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標系中,橢圓的左、右焦點分別為, 也是拋物線的焦點,點在第一象限的交點,且.

          (1)求的方程;

          (2)平面上的點滿足,直線,且與交于兩點,若,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=x-1+ (a∈R,e為自然對數(shù)的底數(shù)).且曲線y=f(x)在點(1,f(1))處的切線平行于x軸.

          (1)求a的值;

          (2)求函數(shù)f(x)的極值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖在多面體中,四邊形是邊長為的正方形, 為等腰梯形,且, , .

          (1)證明:平面平面;

          (2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓,圓,動圓與圓內(nèi)切并且與圓外切,圓心的軌跡為曲線.

          (Ⅰ)求的方程;

          (Ⅱ)已知曲線軸交于兩點,過動點的直線與交于 (不垂直軸),過作直線交于點且交軸于點,若構(gòu)成以為頂點的等腰三角形,證明:直線 的斜率之積為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】4月23日是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動,為了解本校學(xué)生課外閱讀情況,學(xué)校隨機抽取了100名學(xué)生對其課外閱讀時間進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時間(單位:min)的頻率分布直方圖,若將日均課外閱讀時間不低于60 min的學(xué)生稱為“書蟲”,低于60 min的學(xué)生稱為“懶蟲”,

          (1)求x的值并估計全校3 000名學(xué)生中“書蟲”大概有多少名學(xué)生?(將頻率視為概率)

          (2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為“書蟲”與性別有關(guān):

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某保險公司有一款保險產(chǎn)品的歷史收益率(收益率=利潤÷保費收入)的頻率分布直方圖如圖所示:

          (Ⅰ)試估計平均收益率;

          (Ⅱ)根據(jù)經(jīng)驗,若每份保單的保費在20元的基礎(chǔ)上每增加元,對應(yīng)的銷量(萬份)與(元)有較強線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下5組的對應(yīng)數(shù)據(jù):

          據(jù)此計算出的回歸方程為.

          (i)求參數(shù)的估計值;

          (ii)若把回歸方程當作的線性關(guān)系,用(Ⅰ)中求出的平均收益率估計此產(chǎn)品的收益率,每份保單的保費定為多少元時此產(chǎn)品可獲得最大收益,并求出該最大收益.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下面結(jié)論正確的是( )

          ①“所有2的倍數(shù)都是4的倍數(shù),某數(shù)是2的倍數(shù),則一定是4的倍數(shù)”,這是三段論推理,但其結(jié)論是錯誤的.

          ②在類比時,平面中的三角形與空間中的平行六面體作為類比對象較為合適.

          ③由平面三角形的性質(zhì)推測空間四面體的性質(zhì),這是一種合情推理.

          ④一個數(shù)列的前三項是1,2,3,那么這個數(shù)列的通項公式必為.

          A. ①③ B. ②③ C. ③④ D. ②④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一網(wǎng)站營銷部為統(tǒng)計某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購情況,隨機抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購金額情況,如表:

          網(wǎng)購金額

          (單位:千元)

          頻數(shù)

          頻率

          3

          9

          15

          18

          合計

          60

          若將當日網(wǎng)購金額不小于2千元的網(wǎng)友稱為“網(wǎng)購達人”,網(wǎng)購金額小于2千元的網(wǎng)友稱為“網(wǎng)購探者”,已知“網(wǎng)購達人”與“網(wǎng)購探者”人數(shù)的比例為.

          (1)確定,,,的值,并補全頻率分布直方圖;

          (2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當日在該網(wǎng)店網(wǎng)購金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個不低于2千元,則該網(wǎng)店當日評為“皇冠店”,試判斷該網(wǎng)店當日能否被評為“皇冠店”.

          查看答案和解析>>

          同步練習(xí)冊答案