【題目】為了解某社區(qū)居民購買水果和牛奶的年支出費用與購買食品的年支出費用的關系,隨機調查了該社區(qū)5戶家庭,得到如下統(tǒng)計數(shù)據表:
購買食品的年支出費用x(萬元) | 2.09 | 2.15 | 2.50 | 2.84 | 2.92 |
購買水果和牛奶的年支出費用y(萬元) | 1.25 | 1.30 | 1.50 | 1.70 | 1.75 |
根據上表可得回歸直線方程 ,其中
,據此估計,該社區(qū)一戶購買食品的年支出費用為3.00萬元的家庭購買水果和牛奶的年支出費用約為( )
A.1.79萬元
B.2.55萬元
C.1.91萬元
D.1.94萬元
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 且a3=3,S7=28,在等比數(shù)列{bn}中,b3=4,b4=8.
(1)求an及bn;
(2)設數(shù)列{anbn}的前n項和為Tn , 求Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在梯形ABCD中,∠ADC= ,AB∥CD,PC⊥平面ABCD,CP=AB=2DC=2DA,點E在BP上,且EB=2PE.
(1)求證:DP∥平面ACE;
(2)求二面角E﹣AC﹣P的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,圓的參數(shù)方程為 (φ為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,直線l的極坐標方程為
.
(1)將圓的參數(shù)方程化為普通方程,在化為極坐標方程;
(2)若點P在直線l上,當點P到圓的距離最小時,求點P的極坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=ax3﹣x2﹣x+b(a,b∈R,a≠0),g(x)= (e是自然對數(shù)的底數(shù)),f(x)的圖象在x=﹣
處的切線方程為y=
.
(1)求a,b的值;
(2)探究直線y= .是否可以與函數(shù)g(x)的圖象相切?若可以,寫出切點的坐標,否則,說明理由;
(3)證明:當x∈(﹣∞,2]時,f(x)≤g(x).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班級50名學生的考試分數(shù)x分布在區(qū)間[50,100)內,設分數(shù)x的分布頻率是f(x)且f(x)= ,考試成績采用“5分制”,規(guī)定:考試分數(shù)在[50,60)內的成績記為1分,考試分數(shù)在[60,70)內的成績記為2分,考試分數(shù)在[70,80)內的成績記為3分,考試分數(shù)在[80,90)內的成績記為4分,考試分數(shù)在[90,100)內的成績記為5分.用分層抽樣的方法,現(xiàn)在從成績在1分,2分及3分的人中用分層抽樣隨機抽出6人,再從這6人中抽出3人,記這3人的成績之和為ξ(將頻率視為概率).
(1)求b的值,并估計班級的考試平均分數(shù);
(2)求P(ξ=7);
(3)求ξ的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= sin(x+
)﹣
cos(x+
),若存在x1 , x2 , x3 , …,xn滿足0≤x1<x2<x3<…<xn≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…
,則n的最小值為( )
A.6
B.10
C.8
D.12
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產甲,乙兩種產品均需用兩種原料,已知生產1噸每種產品需用
原料及每天原料的可用限額如下表所示,如果生產1噸甲,乙產品可獲利潤分別為3萬元、4萬元,則該企業(yè)可獲得最大利潤為__________萬元.
甲 | 乙 | 原料限額 | |
A(噸) | 3 | 2 | 12 |
B(噸) | 1 | 2 | 8 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com