日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)f(x)=x2-4x+m,g(x)=x+
          4
          x
          在區(qū)間D=[1,3]上,滿足:對于任意的a∈D,存在實(shí)數(shù)x0∈D,使得f(x0)≤f(a),g(x0)≤g(a)且g(x0)=f(x0);那么在D=[1,3]上f(x)的最大值是(  )
          分析:先確定g(x)=x+
          4
          x
          在區(qū)間D=[1,3]上的最大值為5,再根據(jù)定義,即可求得結(jié)論.
          解答:解:∵g(x)=x+
          4
          x
          在區(qū)間[1,2]上單調(diào)遞減,在[2,3]上單調(diào)遞增,g(1)=5,g(3)=
          13
          3

          g(x)=x+
          4
          x
          在區(qū)間D=[1,3]上的最大值為5
          ∵對于任意的a∈D,存在實(shí)數(shù)x0∈D,使得f(x0)≤f(a),g(x0)≤g(a)且g(x0)=f(x0
          ∴在D=[1,3]上f(x)的最大值即為g(x)=x+
          4
          x
          在區(qū)間D=[1,3]上的最大值
          ∴在D=[1,3]上f(x)的最大值為5
          故選A.
          點(diǎn)評:本題考查函數(shù)的最值,考查學(xué)生分析解決問題的能力,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N*),其中x1為正實(shí)數(shù).
          (Ⅰ)用xn表示xn+1;
          (Ⅱ)證明:對一切正整數(shù)n,xn+1≤xn的充要條件是x1≥2
          (Ⅲ)若x1=4,記an=lg
          xn+2xn-2
          ,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)=x2+ax+b,且1≤f(-1)≤2,2≤f(1)≤4,則點(diǎn)(a,b)在aob平面上的區(qū)域的面積是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)=x2+(a+1)x+b是定義在區(qū)間[b-4,b]上的偶函數(shù),則點(diǎn)(a,b)位于( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)=x2+bx+b,其最小值為0,則b的值為(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N*),其中x1>0,則xn+1與xn的關(guān)系正確的是(  )

          查看答案和解析>>

          同步練習(xí)冊答案