(本小題滿分12分)
已知函數(shù).
(1)判斷其奇偶性;
(2)指出該函數(shù)在區(qū)間(0,1)上的單調(diào)性并證明;
(3)利用(1)、(2)的結(jié)論,指出該函數(shù)在(-1,0)上的增減性.
科目:高中數(shù)學 來源: 題型:解答題
(本小題12分)
如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花壇AMPN,要求M在AB的延長線上,N在AD的延長線上,且對角線MN過C點。已知AB=3米,AD=2米。設(shè)
(單位:米),若
(單位:米),則當AM,AN的長度分別是多少時,花壇AMPN的面積最大?并求出最大面積。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
某種型號的汽車在勻速行駛中每小時耗油量y(升)關(guān)于行駛速度x(千米/小時)的函數(shù)解析式可以表示為:
已知甲、乙兩地相距100千米。
(Ⅰ)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(Ⅱ)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè),
, 其中
是不等于零的常數(shù),
(1)、(理)寫出的定義域(2分);
(文)時,直接寫出
的值域(4分)
(2)、(文、理)求的單調(diào)遞增區(qū)間(理5分,文8分);
(3)、已知函數(shù),定義:
,
.其中,
表示函數(shù)
在
上的最小值,
表示函數(shù)
在
上的最大值.例如:
,
,則
,
,
(理)當時,設(shè)
,不等式
恒成立,求的取值范圍(11分);
(文)當時,
恒成立,求
的取值范圍(8分);
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分10分)
已知函數(shù).
(1)求證:不論為何實數(shù)
總是為增函數(shù);
(2)確定的值, 使
為奇函數(shù);
(3)當為奇函數(shù)時, 求
的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,互相垂直的兩條公路
、
旁有一矩形花園
,現(xiàn)欲將其擴建成一個
更大的三角形花園
,要求
在射線
上,
在射線
上,且
過點
,其中
米,
米. 記三角形花園
的面積為
.
(1)設(shè)米,將
表示成
的函數(shù).
(2)當
的長度是多少時,
最小?并求
的最小值.
(3)要使不小于
平方米,則
的長應(yīng)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
((本小題滿分12分)
已知函數(shù)是
上的增函數(shù),
,
.
(Ⅰ)若,求證:
;
(Ⅱ)判斷(Ⅰ)中命題的逆命題是否成立,并用反證法證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
14分)
(1)已知是奇函數(shù),求常數(shù)m的值;
(2)畫出函數(shù)的圖象,并利用圖象回答:
k為何值時,方程|3x-1|=k無解?有一解?有兩解?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com