【題目】(本小題滿分12分)已知函數(shù).
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)若在中,角
,
,
的對(duì)邊分別為
,
,
,
,
為銳角,且
,求
面積
的最大值.
【答案】(1)最小正周期,單調(diào)遞增區(qū)間為
;(2)
.
【解析】
試題分析:(1)首先根據(jù)二倍角公式以及輔助角公式對(duì)的表達(dá)式進(jìn)行化簡(jiǎn):
,從而可知最小正周期
,再根據(jù)正弦函數(shù)
在
,
上單調(diào)遞增,從而可令
,解得
,
,即有單調(diào)遞增區(qū)間為
;(2)由(1)及條件
可知
,
,從而根據(jù)余弦定理
可以得到
,
滿足的一個(gè)等式:
,再由基本不等式可知
,即有
,從而
,即有
面積的最大值為
.
試題解析:(1),∴最小正周期
,令
,∴
,
,即單調(diào)遞增區(qū)間為
;(2)由(1)可得:
,
∴,
,
,∴由余弦定理可得:
,
即,∴
,
∴,當(dāng)且僅當(dāng)
時(shí),等號(hào)成立,
即面積的最大值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,拋物線
的焦點(diǎn)均在
軸上,
的中心和
的頂點(diǎn)均為原點(diǎn)
,從每條曲線上各取兩個(gè)點(diǎn),其坐標(biāo)分別是
,
,
,
.
(1)求,
的標(biāo)準(zhǔn)方程;
(2)是否存在直線滿足條件:①過(guò)
的焦點(diǎn)
;②與
交于不同的兩點(diǎn)
且滿足
?若存在,求出直線方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列五個(gè)命題:
(1)函數(shù)內(nèi)單調(diào)遞增。
(2)函數(shù)的最小正周期為2
。
(3)函數(shù)的圖像關(guān)于點(diǎn)
對(duì)稱(chēng)。
(4)函數(shù)的圖像關(guān)于直線
成軸對(duì)稱(chēng)。
(5)把函數(shù) 的圖象向右平移
得到函數(shù)
的圖象。
其中真命題的序號(hào)是________________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花店每天以每枝元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝
元的價(jià)格出售,如果當(dāng)天賣(mài)不完,剩下的玫瑰花作垃圾處理.
(I)若花店一天購(gòu)進(jìn)枝玫瑰花,寫(xiě)出當(dāng)天的利潤(rùn)
(單位:元)關(guān)于當(dāng)天需求量
(單位:枝,
)的函數(shù)解析式.
(II)花店記錄了天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量 | |||||||
頻數(shù) |
以天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購(gòu)進(jìn)枝玫瑰花,
表示當(dāng)天的利潤(rùn)(單位:元),求
的分布列,數(shù)學(xué)期望.
(ii)若花店計(jì)劃一天購(gòu)進(jìn)枝或
枝玫瑰花,你認(rèn)為應(yīng)購(gòu)進(jìn)
枝還是
枝?只寫(xiě)結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱柱中,
底面
,
,
,且
,
.點(diǎn)
在棱
上,平面
與棱
相交于點(diǎn)
.
(Ⅰ)求證: 平面
.
(Ⅱ)求證: 平面
.
(Ⅲ)求三棱錐的體積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上且過(guò)點(diǎn)
,離心率是
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線過(guò)點(diǎn)
且與橢圓
交于
兩點(diǎn),若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)集,其中
,
,定義向量集
.若對(duì)于任意
,使得
,則稱(chēng)
具有性質(zhì)
.例如
具有性質(zhì)
.
()若
,且
具有性質(zhì)
,求
的值.
()若
具有性質(zhì)
,求證:
,且當(dāng)
時(shí),
.
()若
具有性質(zhì)
,且
,
(
為常數(shù)),求有窮數(shù)列
,
,
,
的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在 中,內(nèi)角
的對(duì)邊分別為
,已知
,且
,
.
(1)求的面積.
(2)已知等差數(shù)列的公差不為零,若
,且
成等比數(shù)列,求
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列為遞增的等比數(shù)列,
,
數(shù)列滿足
.
(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)求證:
是等差數(shù)列;
(Ⅲ)設(shè)數(shù)列滿足
,且數(shù)列
的前
項(xiàng)和
,并求使得
對(duì)任意
都成立的正整數(shù)
的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com