【題目】在平面直角坐標(biāo)系中,已知橢圓
的離心率為
,且過(guò)點(diǎn)
.
(1)求的方程;
(2)若動(dòng)點(diǎn)在直線
上,過(guò)
作直線交橢圓
于
兩點(diǎn),使得
,再過(guò)
作直線
,證明:直線
恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
【答案】(1)(2)
【解析】試題分析:
(1)由題意得,根據(jù)離心率為
可得
,故可得到C的方程。(2)由
為線段
的中點(diǎn)。設(shè)
,當(dāng)
時(shí),由“點(diǎn)差法”可得直線
的斜率為
,從而直線
的方程可求得為
,過(guò)定點(diǎn);當(dāng)
時(shí),
過(guò)點(diǎn)
。故可得直線
過(guò)點(diǎn)
。
試題解析:
(1)由題意知,
又橢圓的離心率為,所以
,
所以,
所以橢圓的方程為
.
(2)因?yàn)橹本的方程為
,設(shè)
,
①當(dāng)時(shí),設(shè)
,顯然
,
由可得
,即
,
又,所以
為線段
的中點(diǎn),
故直線的斜率為
,
又,
所以直線的方程為
即,顯然
恒過(guò)定點(diǎn)
,
②當(dāng)時(shí),
過(guò)點(diǎn)
,
綜上可得直線過(guò)定點(diǎn)
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若如圖為某直三棱柱(側(cè)棱與底面垂直)被削去一部分后的直觀圖與三視圖中的側(cè)視圖、俯視圖,則其正視圖的面積為 ,三棱錐D﹣BCE的體積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 (本小題滿分12分)
如圖, 在四面體ABOC中, , 且
.
(Ⅰ)設(shè)為為
的中點(diǎn), 證明: 在
上存在一點(diǎn)
,使
,并計(jì)算
;
(Ⅱ)求二面角的平面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”,如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出
的值為 ( )
(參考數(shù)據(jù): )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值,這就是著名的“徽率”,如圖是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出
的值為 ( )
(參考數(shù)據(jù): )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,
,點(diǎn)
為
的中點(diǎn),點(diǎn)
為線段
垂直平分線上的一點(diǎn),且
,四邊形
為矩形,固定邊
,在平面
內(nèi)移動(dòng)頂點(diǎn)
,使得
的內(nèi)切圓始終與
切于線段
的中點(diǎn),且
在直線
的同側(cè),在移動(dòng)過(guò)程中,當(dāng)
取得最小值時(shí),點(diǎn)
到直線
的距離為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修44:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓C的參數(shù)方程為
,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
,A,B兩點(diǎn)的極坐標(biāo)分別為
.
(Ⅰ)求圓C的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)點(diǎn)P是圓C上任一點(diǎn),求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中,稱一個(gè)正方體內(nèi)兩個(gè)互相垂直的內(nèi)切圓柱所圍成的立體為“牟合方蓋”,如圖(1)(2),劉徽未能求得牟合方蓋的體積,直言“欲陋形措意,懼失正理”,不得不說(shuō)“敢不闕疑,以俟能言者”.約200年后,祖沖之的兒子祖暅提出“冪勢(shì)既同,則積不容異”,后世稱為祖暅原理,即:兩等高立體,若在每一等高處的截面積都相等,則兩立體體積相等.如圖(3)(4),祖暅利用八分之一正方體去掉八分之一牟合方蓋后的幾何體與長(zhǎng)寬高皆為八分之一正方體的邊長(zhǎng)的倒四棱錐“等冪等積”,計(jì)算出牟合方蓋的體積,據(jù)此可知,牟合方蓋的體積與其外切正方體的體積之比為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為
,且過(guò)點(diǎn)
.
(1)求的方程;
(2)是否存在直線與
相交于
兩點(diǎn),且滿足:①
與
(
為坐標(biāo)原點(diǎn))的斜率之和為2;②直線
與圓
相切,若存在,求出
的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com