【題目】 (本小題滿分12分)
如圖, 在四面體ABOC中, , 且
.
(Ⅰ)設(shè)為為
的中點(diǎn), 證明: 在
上存在一點(diǎn)
,使
,并計(jì)算
;
(Ⅱ)求二面角的平面角的余弦值。
【答案】解法一:
(Ⅰ)在平面內(nèi)作
交
于
,連接
。
又,
,
。
取為
的中點(diǎn),則
。
在等腰
中,
,
在中,
,
在中,
,
.
(Ⅱ)連接 ,由
,
知:
.
又,
又由,
.
是
在平面
內(nèi)的射影.
在等腰中,
為
的中點(diǎn),
根據(jù)三垂線定理,知: ,
為二面角
的平面角.
在等腰中,
,
在中,
,
中,
.
解法二:(Ⅰ) 取為坐標(biāo)原點(diǎn),分別以
,
所在的直線為
軸,
軸,建立空間直角坐標(biāo)系
(如圖),則
,
為
中點(diǎn),
.
設(shè)
.
即
,
。
所以存在點(diǎn) 使得
且
.
(Ⅱ)記平面的法向量為
,則由
,
,
且,得
, 故可取
又平面的法向量為
.
.
二面角的平面角是銳角,記為
,則
.
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
是矩形,面
底面
,且
是邊長為
的等邊三角形,
,
在
上,且
∥面BDM.
(1)求直線PC與平面BDM所成角的正弦值;
(2)求平面BDM與平面PAD所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在研究塞卡病毒(Zika virus)某種疫苗的過程中,為了研究小白鼠連續(xù)接種該種疫苗后出現(xiàn)癥狀的情況,做接種試驗(yàn),試驗(yàn)設(shè)計(jì)每天接種一次,連續(xù)接種3天為一個(gè)接種周期.已知小白鼠接種后當(dāng)天出現(xiàn)
癥狀的概率為
,假設(shè)每次接種后當(dāng)天是否出現(xiàn)
癥狀與上次接種無關(guān).
(1)若出現(xiàn)癥狀即停止試驗(yàn),求試驗(yàn)至多持續(xù)一個(gè)接種周期的概率;
(2)若在一個(gè)接種周期內(nèi)出現(xiàn)3次 癥狀,則這個(gè)接種周期結(jié)束后終止試驗(yàn),試驗(yàn)至多持續(xù)3個(gè)周期,設(shè)接種試驗(yàn)持續(xù)的接種周期數(shù)為
,求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,試討論函數(shù)
的單調(diào)性;
(Ⅱ)設(shè),當(dāng)
對(duì)任意的
恒成立時(shí),求函數(shù)
的最大值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題:已知實(shí)數(shù)
,
滿足約束條件
,二元一次不等式
恒成立,
命題:設(shè)數(shù)列
的通項(xiàng)公式為
,若
,使得
.
(1)分別求出使命題,
為真時(shí),實(shí)數(shù)
的取值范圍;
(2)若命題與
真假相同,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)
的極值;
(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓
的離心率為
,且過點(diǎn)
.
(1)求的方程;
(2)若動(dòng)點(diǎn)在直線
上,過
作直線交橢圓
于
兩點(diǎn),使得
,再過
作直線
,證明:直線
恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(2x﹣1)的定義域?yàn)閇﹣1,4],則函數(shù)f(x)的定義域?yàn)椋ā 。?/span>
A.(﹣3,7]
B.[﹣3,7]
C.(0,]
D.[0,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com