日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】小張?jiān)谔詫毦W(wǎng)上開一家商店,他以10元每條的價(jià)格購進(jìn)某品牌積壓圍巾2000條.定價(jià)前,小張先搜索了淘寶網(wǎng)上的其它網(wǎng)店,發(fā)現(xiàn):A商店以30元每條的價(jià)格銷售,平均每日銷售量為10條;B商店以25元每條的價(jià)格銷售,平均每日銷售量為20條.假定這種圍巾的銷售量t(條)是售價(jià)x(元)(x∈Z+)的一次函數(shù),且各個(gè)商店間的售價(jià)、銷售量等方面不會(huì)互相影響.
          (1)試寫出圍巾銷售每日的毛利潤y(元)關(guān)于售價(jià)x(元)(x∈Z+)的函數(shù)關(guān)系式(不必寫出定義域),并幫助小張定價(jià),使得每日的毛利潤最高(每日的毛利潤為每日賣出商品的進(jìn)貨價(jià)與銷售價(jià)之間的差價(jià));
          (2)考慮到這批圍巾的管理、倉儲(chǔ)等費(fèi)用為200元/天(只要圍巾沒有售完,均須支付200元/天,管理、倉儲(chǔ)等費(fèi)用與圍巾數(shù)量無關(guān)),試問小張應(yīng)該如何定價(jià),使這批圍巾的總利潤最高(總利潤=總毛利潤﹣總管理、倉儲(chǔ)等費(fèi)用)?

          【答案】
          (1)解:設(shè)t=kx+b,∴ ,解得k=﹣2,b=70,∴t=70﹣2x.

          y=(x﹣10)t=(x﹣10)(70﹣2x)=﹣2x2+90x﹣700,

          ,∴圍巾定價(jià)為22元或23元時(shí),每日的利潤最高


          (2)解:設(shè)售價(jià)x(元)時(shí)總利潤為z(元),

          ∴z=2000(x﹣10)﹣200

          =2000(25﹣((35﹣x)+ ))≤2000(25﹣ )=10000元.

          當(dāng)35﹣x= 時(shí),即x=25時(shí),取得等號(hào).

          ∴小張的這批圍巾定價(jià)為25元時(shí),這批圍巾的總利潤最高


          【解析】(1)根據(jù)題意先求出銷售量t與售價(jià)x之間的關(guān)系式,再利用毛利潤為每日賣出商品的進(jìn)貨價(jià)與銷售價(jià)之間的差價(jià),確定毛利潤y(元)關(guān)于售價(jià)x(元)(x∈Z+)的函數(shù)關(guān)系式,利用二次函數(shù)求最值的方法可求;(2)根據(jù)總利潤=總毛利潤﹣總管理、倉儲(chǔ)等費(fèi)用,構(gòu)建函數(shù)關(guān)系,利用基本不等式可求最值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,平面平面,底面為梯形, ,且均為正三角形, 的重心.

          (1)求證: 平面;

          (2)求平面與平面所成銳二面角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 的上下頂點(diǎn)分別為,且點(diǎn) 分別為橢圓的左、右焦點(diǎn),且

          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

          (Ⅱ)點(diǎn)是橢圓上異于, 的任意一點(diǎn),過點(diǎn)軸于, 為線段

          的中點(diǎn).直線與直線交于點(diǎn) 為線段的中點(diǎn), 為坐標(biāo)原點(diǎn).求

          的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè),若存在常數(shù),使得對(duì)任意,均有,則稱為有界集合,同時(shí)稱為集合的上界.

          (1)設(shè)、,試判斷、是否為有界集合,并說明理由;

          (2)已知,記).若

          ,且為有界集合,求的值及的取值范圍;

          (3)設(shè)均為正數(shù),將中的最小數(shù)記為.是否存在正數(shù),使得為有界集合, 均為正數(shù)的上界,若存在,試求的最小值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) 的值域?yàn)榧螦,關(guān)于x的不等式 的解集為B,集合 ,集合D={x|m+1≤x<2m﹣1}(m>0)
          (1)若A∪B=B,求實(shí)數(shù)a的取值范圍;
          (2)若DC,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)y=f(x),若在定義域內(nèi)存在x0 , 使得f(﹣x0)=﹣f(x0)成立,則稱x0為函數(shù)y=f(x)的局部對(duì)稱點(diǎn).
          (1)若a、b∈R且a≠0,證明:函數(shù)f(x)=ax2+bx﹣a必有局部對(duì)稱點(diǎn);
          (2)若函數(shù)f(x)=2x+c在定義域[﹣1,2]內(nèi)有局部對(duì)稱點(diǎn),求實(shí)數(shù)c的取值范圍;
          (3)若函數(shù)f(x)=4x﹣m2x+1+m2﹣3在R上有局部對(duì)稱點(diǎn),求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直四棱柱ABCDA1B1C1D1,底面四邊形ABCD為菱形,A1AAB2,∠ABC,E,F分別是BC,A1C的中點(diǎn)

          (1)求異面直線EF,AD所成角的余弦值;

          (2)點(diǎn)M在線段A1D上, .若CM∥平面AEF,求實(shí)數(shù)λ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若函數(shù)f(x)=loga(x+ )是奇函數(shù),則a=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù))與函數(shù)有公共切線.

          (Ⅰ)求的取值范圍;

          (Ⅱ)若不等式對(duì)于的一切值恒成立,求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案