日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】函數(shù)內(nèi)只取到一個最大值和一個最小值,且當(dāng)時,;當(dāng)時,.

          (1)求函數(shù)的解析式.

          (2)求函數(shù)的單調(diào)遞增區(qū)間.

          (3)是否存在實數(shù),滿足不等式?若存在,求出的范圍(或值);若不存在,請說明理由.

          【答案】(1);(2).(3)存在,

          【解析】

          (1)由題意,得到, ,進(jìn)而求得,得到,代入點(diǎn),求得的值,即可得到函數(shù)的解析式;

          (2)利用正弦型函數(shù)的性質(zhì),即可求得函數(shù)的單調(diào)遞增區(qū)間,得到答案;

          (3)由實數(shù)滿足,求得,再由函數(shù)在上單調(diào)遞增,求得,即可得到結(jié)論.

          (1)由題意,可得,,所以,

          所以,所以.

          由點(diǎn)在函數(shù)圖象上,得,

          因為,所以,所以.

          (2)當(dāng)時,

          時,函數(shù)單調(diào)遞增,

          所以函數(shù)的單調(diào)遞增區(qū)間為.

          (3)由題意,實數(shù)滿足,解得.

          因為,所以,同理

          由(2)知函數(shù)在上單調(diào)遞增,

          只需,即成立即可,

          所以存在,使成立.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)當(dāng) 時,求函數(shù)圖象在點(diǎn)處的切線方程;

          (2)當(dāng)時,討論函數(shù)的單調(diào)性;

          (3)是否存在實數(shù),對任意,恒成立?若存在,求出的取值范圍;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一個不透明的袋子裝有4個完全相同的小球,球上分別標(biāo)有數(shù)字為0,1,2,2,現(xiàn)甲從中摸出一個球后便放回,乙再從中摸出一個球,若摸出的球上數(shù)字大即獲勝(若數(shù)字相同則為平局),則在甲獲勝的條件下,乙摸1號球的概率為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

          (1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時間的關(guān)系,對該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動的時間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)

          平均每天鍛煉
          的時間(分鐘)

          [0,10)

          [10,20)

          [20,30)

          [30,40)

          [40,50)

          [50,60)

          總?cè)藬?shù)

          20

          36

          44

          50

          40

          10

          將學(xué)生日均課外課外體育運(yùn)動時間在[40,60)上的學(xué)生評價為“課外體育達(dá)標(biāo)”.
          (1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?

          課外體育不達(dá)標(biāo)

          課外體育達(dá)標(biāo)

          合計

          20

          110

          合計

          參考公式: ,其中n=a+b+c+d.
          參考數(shù)據(jù):

          P(K2≥k0

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          k0

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828


          (2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該校高三學(xué)生中,抽取3名學(xué)生,記被抽取的3名學(xué)生中的“課外體育達(dá)標(biāo)”學(xué)生人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的數(shù)學(xué)期望和方差.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計劃在市的區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店聽其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開設(shè)分店的個數(shù), 表示這個個分店的年收入之和.

          (個)

          2

          3

          4

          5

          6

          (百萬元)

          2.5

          3

          4

          4.5

          6

          (1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程;

          (2)假設(shè)該公司在區(qū)獲得的總年利潤(單位:百萬元)與之間的關(guān)系為,請結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在區(qū)開設(shè)多少個分時,才能使區(qū)平均每個分店的年利潤最大?

          (參考公式: ,其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】解答
          (1)設(shè)函數(shù)f(x)=|x﹣ |+|x﹣a|,x∈R,若關(guān)于x的不等式f(x)≥a在R上恒成立,求實數(shù)a的最大值;
          (2)已知正數(shù)x,y,z滿足x+2y+3z=1,求 + + 的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

          (1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,AC為⊙O的直徑,D為 的中點(diǎn),E為BC的中點(diǎn).

          (1)求證:DE∥AB;
          (2)求證:ACBC=2ADCD.

          查看答案和解析>>

          同步練習(xí)冊答案