日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù).其中.
          (1)若曲線y=f(x)與y=g(x)在x=1處的切線相互平行,求兩平行直線間的距離;
          (2)若f(x)≤g(x)-1對(duì)任意x>0恒成立,求實(shí)數(shù)的值;
          (3)當(dāng)<0時(shí),對(duì)于函數(shù)h(x)=f(x)-g(x)+1,記在h(x)圖象上任取兩點(diǎn)A、B連線的斜率為,若,求的取值范圍.

          (1) ;(2)2; (3)

          解析試題分析:(1)因?yàn)榍y=f(x)與y=g(x)在x=1處的切線相互平行,所以分別對(duì)這兩個(gè)函數(shù)求導(dǎo),可得導(dǎo)函數(shù)在x=1處的斜率相等,即可求出的值以及求出兩條切線方程.再根據(jù)平行間的距離公式求出兩切線的距離.
          (2) 由f(x)≤g(x)-1對(duì)任意x>0恒成立,所以構(gòu)造一個(gè)新的函數(shù),在x>0時(shí)求出函數(shù)的最值符合條件即可得到的范圍.
          (3)根據(jù)(2)所得的結(jié)論當(dāng)當(dāng)<0時(shí),由(2)知<0,∴h(x)在(0,+∞)上是減函數(shù),所以根據(jù)可以得到函數(shù)與變量的關(guān)系式,從而構(gòu)造一個(gè)新的函數(shù),得到的范圍.
          試題解析:(1),依題意得: ="2;"
          曲線y=f(x)在x=1處的切線為2x-y-2=0,
          曲線y=g(x)在x=1處的切線方程為2x-y-1=0.兩直線間的距離為
          (2)令h(x)=f(x)-g(x)+1, ,則
          當(dāng)≤0時(shí), 注意到x>0, 所以<0, 所以h(x)在(0,+∞)單調(diào)遞減,又h(1)=0,故0<x<1時(shí),h(x)>0,即f(x)> g(x)-1,與題設(shè)矛盾.
          當(dāng)>0時(shí),
          當(dāng),當(dāng)時(shí),
          所以h(x)在上是增函數(shù),在上是減函數(shù),
          ∴h(x)≤
          因?yàn)閔(1)=0,又當(dāng)≠2時(shí),≠1,不符.所以=2. 
          (3)當(dāng)<0時(shí),由(2)知<0,∴h(x)在(0,+∞)上是減函數(shù),
          不妨設(shè)0<x1≤x2,則|h(x1)-h(huán)(x2)|=h(x1)-h(huán)(x2),|x1-x2|=x2-x1,
          ∴|h(x1)-h(huán)(x2)|≥|x1-x2|
          等價(jià)于h(x1)-h(huán)(x2)≥x2-x1,即h(x1)+x1≥h(x2)+x2,令H(x)=h(x)+x=lnx-x2+x+1,H(x)在(0,+∞)上是減函數(shù),
           (x>0),∴-2x2+x+≤0在x>0時(shí)恒成立,∴≤(2x2-x)min又x>0時(shí), (2x2-x)min=
          ∴a≤-,又a<0,∴a的取值范圍是
          考點(diǎn):1.導(dǎo)數(shù)的幾何意義.2.含參數(shù)的不等式恒成立問(wèn)題.3.函數(shù)方程間的等價(jià)變化轉(zhuǎn)化為熟悉的問(wèn)題從而解決問(wèn)題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)f(x)=x3ax-1
          (1)若f(x)在實(shí)數(shù)集R上單調(diào)遞增,求a的取值范圍;
          (2)是否存在實(shí)數(shù)a,使f(x)在(-1,1)上單調(diào)遞減,若存在,求出a的取值范圍;若不存在,說(shuō)明理由;
          (3)證明f(x)=x3ax-1的圖象不可能總在直線ya的上方.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù),(>0,,以點(diǎn)為切點(diǎn)作函數(shù)圖象的切線,記函數(shù)圖象與三條直線所圍成的區(qū)域面積為
          (1)求
          (2)求證:;
          (3)設(shè)為數(shù)列的前項(xiàng)和,求證:.來(lái)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知:函數(shù).
          (1)函數(shù)的圖像在點(diǎn)處的切線的傾斜角為,求的值;
          (2)若存在使,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          設(shè)函數(shù)f(x)=x2+aln(x+1)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2.
          (1)求實(shí)數(shù)a的取值范圍;
          (2)當(dāng)a=時(shí),判斷方程f(x)=-的實(shí)數(shù)根的個(gè)數(shù),并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)f(x)=x3+ax2+bx(a,b∈R).
          (1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)若f(1)=,且函數(shù)f(x)在上不存在極值點(diǎn),求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)f(x)=lnx+ax(a∈R).
          (1)求f(x)的單調(diào)區(qū)間;
          (2)設(shè)g(x)=x2-4x+2,若對(duì)任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)f(x)=ln ax (a≠0).
          (1)求函數(shù)f(x)的單調(diào)區(qū)間及最值;
          (2)求證:對(duì)于任意正整數(shù)n,均有1+(e為自然對(duì)數(shù)的底數(shù));
          (3)當(dāng)a=1時(shí),是否存在過(guò)點(diǎn)(1,-1)的直線與函數(shù)yf(x)的圖象相切?若存在,有多少條?若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)f(x)=ax2-(2a+1)x+2ln x,a∈R.
          (1)若曲線yf(x)在x=1和x=3處的切線互相平行,求a的值;
          (2)求f(x)的單調(diào)區(qū)間.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案