日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若函數(shù)f(x)=2x2-ln x在其定義域內(nèi)的一個(gè)子區(qū)間(k-1,k+1)內(nèi)不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是( )
          A.[1,+∞)
          B.[1,2)
          C.
          D.

          【答案】C
          【解析】∵f(x)=2x2-lnx(x>0),
          ∴f′(x)=4x- (x>0),
          由f′(x)=0,得x= ,
          當(dāng)x∈(0, )時(shí),f′(x)<0,f(x)單調(diào)遞減;
          當(dāng)x∈( ,+∞)時(shí),f′(x)>0,f(x)單調(diào)遞增.
          據(jù)題意,
          解得1≤k< .
          故答案為:C.
          先確定函數(shù)的定義域然后求導(dǎo)數(shù)fˊ(x),在函數(shù)的定義域內(nèi)解方程fˊ(x)=0,使方程的解在定義域內(nèi)的一個(gè)子區(qū)間(k-1,k+1)內(nèi),建立不等關(guān)系,解之即可.導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系:
          (1)若f′(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù),f′(x)>0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為增區(qū)間;
          (2)若f′(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù),f′(x)<0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為減區(qū)間.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)拋物線y2=4x的焦點(diǎn)為F,過點(diǎn)F作直線l與拋物線分別交于兩點(diǎn)A,B,若點(diǎn)M滿足 = + ),過M作y軸的垂線與拋物線交于點(diǎn)P,若|PF|=2,則M點(diǎn)的橫坐標(biāo)為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖直三棱柱 中, 為邊長(zhǎng)為2的等邊三角形, ,點(diǎn) 、 、 、 分別是邊 、 、 的中點(diǎn),動(dòng)點(diǎn) 在四邊形 內(nèi)部運(yùn)動(dòng),并且始終有 平面 ,則動(dòng)點(diǎn) 的軌跡長(zhǎng)度為( )

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a>b,a>c.△ABC的外接圓半徑為1, ,若邊BC上一點(diǎn)D滿足BD=2DC,且∠BAD=90°,則△ABC的面積為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖, 為半圓 的直徑,點(diǎn) 是半圓弧上的兩點(diǎn), .曲線 經(jīng)過點(diǎn) ,且曲線 上任意點(diǎn) 滿足: 為定值.

          (Ⅰ)求曲線 的方程;
          (Ⅱ)設(shè)過點(diǎn) 的直線 與曲線 交于不同的兩點(diǎn) ,求 面積最大時(shí)的直線 的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為30元,并且每件產(chǎn)品須向總公司繳納a元(a為常數(shù),2≤a≤5)的管理費(fèi),根據(jù)多年的統(tǒng)計(jì)經(jīng)驗(yàn),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為x元時(shí),產(chǎn)品一年的銷售量為 (e為自然對(duì)數(shù)的底數(shù))萬件,已知每件產(chǎn)品的售價(jià)為40元時(shí),該產(chǎn)品一年的銷售量為500萬件.經(jīng)物價(jià)部門核定每件產(chǎn)品的售價(jià)x最低不低于35元,最高不超過41元.
          (1)求分公司經(jīng)營(yíng)該產(chǎn)品一年的利潤(rùn)L(x)萬元與每件產(chǎn)品的售價(jià)x元的函數(shù)關(guān)系式;
          (2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),該產(chǎn)品一年的利潤(rùn)L(x)最大,并求出L(x)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】近年來隨著我國(guó)在教育利研上的投入不斷加大,科學(xué)技術(shù)得到迅猛發(fā)展,國(guó)內(nèi)企業(yè)的國(guó)際競(jìng)爭(zhēng)力得到大幅提升.伴隨著國(guó)內(nèi)市場(chǎng)增速放緩,國(guó)內(nèi)確實(shí)力企業(yè)紛紛進(jìn)行海外布局,第二輪企業(yè)出海潮到來,如在智能手機(jī)行業(yè),國(guó)產(chǎn)品牌已在趕超國(guó)外巨頭,某品牌手機(jī)公司一直默默拓展海外市場(chǎng),在海外共設(shè)30多個(gè)分支機(jī)構(gòu),需要國(guó)內(nèi)公司外派大量70后、80后中青年員工.該企業(yè)為了解這兩個(gè)年齡層員工是否愿意被外派上作的態(tài)度,按分層抽樣的方式從70后利80后的員工中隨機(jī)調(diào)查了100位,得到數(shù)據(jù)如下表:

          愿意被外派

          不愿意被外派

          合計(jì)

          70后

          20

          20

          40

          80后

          40

          20

          60

          合計(jì)

          60

          40

          100

          參考數(shù)據(jù):

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          (參考公式: ,其中
          (1)根據(jù)查的數(shù)據(jù),是否有 的把握認(rèn)為“是否愿意被外派與年齡有關(guān)”,并說明理由;
          (2)該公司參觀駐海外分支機(jī)構(gòu)的交流體驗(yàn)活動(dòng),擬安排4名參與調(diào)查的70后員工參加,70后的員工中有愿意被外派的3人和不愿意被外派的3人報(bào)名參加,現(xiàn)采用隨機(jī)抽樣方法從報(bào)名的員工中選4人,求選到愿意被外派人數(shù)不少于不愿意被外派人數(shù)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程
          在平面直角坐標(biāo)系中,已知曲線 的參數(shù)方程為 為參數(shù)),點(diǎn) 是曲線 上的一動(dòng)點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線 的方程為 .
          (Ⅰ)求線段 的中點(diǎn) 的軌跡的極坐標(biāo)方程;
          (Ⅱ)求曲線 上的點(diǎn)到直線 的距離的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) .
          (Ⅰ)當(dāng) 時(shí),求不等式 的解集;
          (Ⅱ)若 的解集包含 ,求實(shí)數(shù) 的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案