日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的離心率為分別為的上、下頂點(diǎn)且外的動點(diǎn),且上點(diǎn)的最近距離為1

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)當(dāng)時,設(shè)直線分別與橢圓交于兩點(diǎn),若的面積是的面積的倍,求的最大值.

          【答案】12

          【解析】

          試題(1)求橢圓標(biāo)準(zhǔn)方程,關(guān)鍵是列出兩個獨(dú)立條件,解對應(yīng)方程組即可,本題關(guān)鍵是轉(zhuǎn)化條件:上點(diǎn)的最近距離為,再結(jié)合離心率可得,2)求最值問題,首先將研究對象轉(zhuǎn)化為一元函數(shù):,再將直線方程與橢圓方程聯(lián)立,解出對應(yīng)點(diǎn)坐標(biāo),,代入化簡得,最后根據(jù)導(dǎo)數(shù)或基本不等式求最值

          試題解析:(1)由于到橢圓上點(diǎn)的最近距離,,

          ,解得,

          所以橢圓方程為

          2)解法一:,

          直線方程為:,聯(lián)立,得

          所以的距離

          ,

          直線方程為:,聯(lián)立,得,

          所以,所以

          所以,

          所以,

          ,則,

          當(dāng)且僅當(dāng),即時,取,所以的最大值為

          解法二:直線方程為,聯(lián)立,得,

          直線方程為:,聯(lián)立,得,

          ,

          ,則

          當(dāng)且僅當(dāng),即時,取,

          所以的最大值為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某班級體育課進(jìn)行一次籃球定點(diǎn)投籃測試,規(guī)定每人最多投3次,每次投籃的結(jié)果相互獨(dú)立.處每投進(jìn)一球得3分,在處每投進(jìn)一球得2分,否則得0.將學(xué)生得分逐次累加并用表示,如果的值不低于3分就判定為通過測試,立即停止投籃,否則應(yīng)繼續(xù)投籃,直到投完三次為止.現(xiàn)有兩種投籃方案:方案1:先在處投一球,以后都在處投;方案2:都在處投籃.已知甲同學(xué)在處投籃的命中率為,在處投籃的命中率為.

          1)若甲同學(xué)選擇方案1,求他測試結(jié)束后所得總分的分布列和數(shù)學(xué)期望

          2)你認(rèn)為甲同學(xué)選擇哪種方案通過測試的可能性更大?說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四邊形ABED中,AB//DE,ABBE,點(diǎn)C在AB上,且ABCD,AC=BC=CD=2,現(xiàn)將△ACD沿CD折起,使點(diǎn)A到達(dá)點(diǎn)P的位置,且PE.

          (1)求證:平面PBC 平面DEBC;

          (2)求三棱錐P-EBC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司計(jì)劃購買2臺機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購進(jìn)機(jī)器時,可以額外購買這種零件作為備件,每個200.在機(jī)器使用期間,如果備件不足再購買,則每個500.現(xiàn)需決策在購買機(jī)器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

          以這100臺機(jī)器更換的易損零件數(shù)的頻率代替1臺機(jī)器更換的易損零件數(shù)發(fā)生的概率,記表示2臺機(jī)器三年內(nèi)共需更換的易損零件數(shù),表示購買2臺機(jī)器的同時購買的易損零件數(shù).

          )求的分布列;

          )若要求,確定的最小值;

          )以購買易損零件所需費(fèi)用的期望值為決策依據(jù),在之中選其一,應(yīng)選用哪個?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)a,.

          1)若,且內(nèi)有且只有一個零點(diǎn),求a的值;

          2)若,且有三個不同零點(diǎn),問是否存在實(shí)數(shù)a使得這三個零點(diǎn)成等差數(shù)列?若存在,求出a的值,若不存在,請說明理由;

          3)若,試討論是否存在,使得.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,過點(diǎn)作傾斜角為的直線,以原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,將曲線上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到曲線,直線與曲線交于不同的兩點(diǎn).

          1)求直線的參數(shù)方程和曲線的普通方程;

          2)求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐中,平面平面,底面為矩形,,,分別為線段、上一點(diǎn),且,.

          (1)證明:

          (2)證明:平面,并求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在梯形ABCD中,AB//CDAB=3,CD=6,過A,B分別作CD的垂線,垂足分別為E,F,已知DE=1,AE=3,將梯形ABCD沿AE,BF同側(cè)折起,使得平面ADE⊥平面ABFE,平面ADE∥平面BCF,得到圖2.

          1)證明:BE//平面ACD;

          2)求三棱錐CAED的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,底面是等腰梯形,,點(diǎn)的中點(diǎn),以為邊作正方形,且平面平面.

          1)證明:平面平面.

          2)求二面角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊答案