已知函數(shù)f(x)=(ax2+bx+c)ex且f(0)=1,f(1)=0.
(1)若f(x)在區(qū)間[0,1]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=0時(shí),是否存在實(shí)數(shù)m使不等式2f(x)+4xex≥mx+1≥-x2+4x+1對任意x∈R恒成立?若存在,求出m的值,若不存在,請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若關(guān)于的方程
在區(qū)間
內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖像過坐標(biāo)原點(diǎn)
,且在點(diǎn)
處的切線的斜率是
.
(1)求實(shí)數(shù)的值;
(2)求在區(qū)間
上的最大值;
(3)對任意給定的正實(shí)數(shù),曲線
上是否存在兩點(diǎn)
,使得
是以
為直角頂點(diǎn)的直角三角形,且此三角形斜邊的中點(diǎn)在
軸上?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)
的極小值;
(2)當(dāng)時(shí),過坐標(biāo)原點(diǎn)
作曲線
的切線,設(shè)切點(diǎn)為
,求實(shí)數(shù)
的值;
(3)設(shè)定義在上的函數(shù)
在點(diǎn)
處的切線方程為
當(dāng)
時(shí),若
在
內(nèi)恒成立,則稱
為函數(shù)
的“轉(zhuǎn)點(diǎn)”.當(dāng)
時(shí),試問函數(shù)
是否存在“轉(zhuǎn)點(diǎn)”.若存在,請求出“轉(zhuǎn)點(diǎn)”的橫坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=,x∈(1,+∞).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)函數(shù)f(x)在區(qū)間[2,+∞)上是否存在最小值,若存在,求出最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
,其中
的函數(shù)圖象在點(diǎn)
處的切線平行于
軸.
(1)確定與
的關(guān)系; (2)若
,試討論函數(shù)
的單調(diào)性;
(3)設(shè)斜率為的直線與函數(shù)
的圖象交于兩點(diǎn)
(
)證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(Ⅰ)當(dāng)時(shí),求
的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)時(shí),
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),
的圖象在點(diǎn)
處的切線平行于直線
,求
的值;
(2)當(dāng)時(shí),
在點(diǎn)
處有極值,
為坐標(biāo)原點(diǎn),若
三點(diǎn)共線,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中
.
(Ⅰ)若,求
的值,并求此時(shí)曲線
在點(diǎn)
處的切線方程;
(Ⅱ)求函數(shù)在區(qū)間
上的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com